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ABSTRACT 

Perhaps the most exciting aspect of electronic commerce is the potential ability to learn 

the preferences of individual customers and make tailored recommendations to them.  

When making such recommendations the recommendation system is facing a 

fundamental dilemma.  Should it provide the best recommendation based on its current 

state of understanding of the customer or should it try to learn more about the customer 

in order to provide higher potential payoffs in the future?  This dilemma is at the heart 

of the current work. 

The dilemma facing a recommendation system is presented conceptually, and an 

approach for ideal learning is proposed and tested.  In order to test our hypothesis, we 

modified one commercially available recommendation engine to consider measures of 

novelty in an initial learning phase. We analyzed results from the normal and modified 

engine for different datasets and characteristics of customers. 
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C h a p t e r  1  

INFORMATION OVERLOAD AND PERSONALIZATION 

With the advent of the Internet, and the explosion of popularity of the world 

wide web, new ways of interfacing with the customer are possible. Whereas 

before the communication was usually one way and feedback from the user was 

delayed or indirect (e.g. television or print advertisement) nowadays the Internet 

allows for a much more interactive experience.  

In addition, web sites have been growing at a tremendous pace in the past years. 

Available information, therefore, has exploded and has quickly become 

unmanageable for the average person. Personalization technology is an enabler to 

attempt to cope with this information overload problem. 

Not only are we now able to immediately receive feedback from the user by, for 

example, measuring the time spent on our website; but also we can pro-actively 

personalize what we present on the screen. This ability to target the individual as 

opposed to a market segment is called “one-to-one web marketing”. 

The underlying hypothesis under one-to-one web marketing is that users will 

benefit more from the web experience, thus leading to greater attachment to the 

website owner and possibly to increased receptiveness to up-sell and cross-sell 

opportunities and thus in increased revenue. 

The Technology Behind Personalization 
There are a number of mechanisms to decide what to present to the user at each 

of the pages in the website. These technologies span the range from deciding 
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which pages to present next to the user, what colors to show the text in, to which 

products or advertisements to present on the page based on the system’s 

knowledge of the user. Generically speaking, this “tailoring” of a website to a user 

is termed “personalization”.  

As it will be presented in the next chapter, personalizing a website implies a 

number of activities. Underlying most of these activities, however, lies the 

question: “How do we select among X, Y, or Z given what we know about the 

user?” One obvious example of this is Amazon.com, where users are 

recommended products. However, the answer to the above question can (and 

should) drive personalization in a much wider range, such as which banner ads to 

present, what colors to use, and other non explicitly-requested items. 

At the heart of non-trivial personalization there is thus the problem of “product 

recommendation”, where product can range from actual products, to screen 

configurations and other recommendations. This thesis work concerns itself with 

the technology behind product recommendation, and suggests an alternative way 

to improve its performance. 
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C h a p t e r  2  

THE MANY MEANINGS OF WEB PERSONALIZATION 

The concept of personalizing content has become very popular nowadays. 

However, there’s substantial confusion as to what personalization means. Some 

web sites claim to have personalized content because they print the name or 

nickname of the user when the user logs in. Some web sites “personalize” by 

making recommendations based on the purchases of other users.   Other web 

sites actually recommend products based on the individual’s preferences.  

Ironically, even the most popular “personalized” sites are not really tailored to 

each individual, but rather to a market segment. This section will explore the 

different approaches to personalization from a high-level perspective, and present 

the pros and cons of each. 

Customization 
The first approach that we will consider is one we have termed “customization”. 

Solutions employing this approach usually ask the user for specific information 

(i.e. name, age, zip code, preferences in movies, etc) which is then used to tailor 

the site’s content to the user.  

These systems, although very useful, cannot really be considered intelligent, as 

they do not attempt to infer what “else” the user might like, given what they 

know the user already likes. In a nutshell, these systems do not “learn” from their 

interactions with the user.  
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This approach to personalization is a first-step and has become very popular.  For 

example, Figure 1 shows a snapshot of a customized page for my.netscape.com.  

Note the circled sections and the information they contain.  Since the user told 

the system that he lives in Boston and has relatives in Argentina, the site lists the 

weather in both Boston and a couple of user-selected cities in Argentina.  In 

addition, the user is also provided with movie listings and stock quotes that he 

has requested. 

It is important to realize that this type of personalization is “static”. In other 

words, even though the actual content will change (i.e. updated weather, new 

movie releases, and updated stock prices), the categories that are shown to the 

user (city weather, stock quotes, movie reviews) remain fixed. That is, there is no 

learning involved.  The system will not present the user with content beyond the 

specific content that the user pre-selected.  For example, the system will not 

present the user with: 

•  Information about a recent earthquake in Argentina of devastating 

consequences. In this case, even though this information is clearly 

relevant to the user, it does not fit the “weather-from-Argentina” 

category. 

•  The release of the “Evita” soundtrack CD. In this case, even though the 

user probably liked the movie, and it deals with Argentina, this CD is not 

in the “movies” category and thus will not be shown. 

This type of system is useful when the content can be separated into clear and 

crisp categories that the user can configure.  Configuration is performed when the 

system presents content categories to the user (weather, movies, stocks) and the 

user provides information that uniquely (and deterministically) identifies the 

content to be presented.  For instance, the user would enter 02144 for the ZIP 
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code, the AMC-Boston movie theater for the movies section, and {VZ, PMIX} 

for the stock quotes.  Once this has been configured, the content will “refresh” 

the elements, but will not change (add/remove) categories. 

 

 
Figure 1: My Netscape - Customization example 

 

Rule-Based Systems 
Whenever personalization can be fully expressed as a function of known data in 

the form of if-then rules, a rule-based approach is advisable.  For a rule-based 

system to be a viable solution, the “knowledge engineer” needs to have a 

sufficiently complete understanding of the domain and all the possibilities that 

may arise.  It is the job of the “knowledge engineer” to document this 

“knowledge” into the form of hard-coded rules. 

It can be very difficult to use a rule-based solution for recommending products 

because the domain can be very large with extensive possibilities.  However, rule 

based engines can be very effective for both narrowing a recommendation search 
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and for fine-tuning a result set.  For example, many shopping sites use rules, 

similar to the rules below, to enhance the customer experience: 

 
IF {PROD1,PROD2} in recommendation set
IF deliveryTime(PROD1) < deliveryTime(PROD2) THEN
RECOMMEND PROD1

ELSE
RECOMMEND PROD2 

 
 
Rule based systems are not very adaptable (with the exception of the parameters 

that the rules might be provided with).  Rule-based systems are applicable when 

we know the domain and are not interested in learning. 

Many toolkits are available to create inference systems from rule-based 

technology. Figure 2 shows a snapshot from the promotional materials of one 

such toolkit. Note how the engine recommends a second on-sale item based on 

the fact that the user has selected an on-sale item. Behind the scenes, the engine is 

using a rule such as 

IF SELECT-ONSALE THEN RECOMMEND ONSALE

One factor that should be of concern is that, as Figure 2 boasts, the engine would 

recommend a second on-sale item even though the user has never actually 

purchased an on-sale item (the user only browsed an on-sale item).  What if the 

user was an individual that really does not care for on-sale items, but simply 

found an item of interest that just happened to be on sale?  He would be shown 

other on-sale items! This type of inflexibility is characteristic of rule-based 

systems.  

At the core of this problem is the fact that rule-based systems usually do not 

allow us to really get at the reason why customers make the decisions they make. 



 

 7

In a sense, rule-based systems are dependent on very few product attributes and 

rules are built on top of those. These relatively few attributes might not be 

enough to represent the user’s complex decision functions. Hence rule-based 

system’s lack of predictive accuracy. For example, the “onsale” attribute used in 

the rule above might not accurately represent the reason why the user decided to 

buy the product in the first place. As a matter of fact, maybe the user bought the 

product because of its color without paying any importance to whether the 

product was on sale or not. However, since this rule only looks at one coarse-

level attribute (“onsale”), it will make the incorrect inference of showing the user 

other on-sale items. 

In essence, rule-based systems are useful for specifying universal truths or facts, 

as they make little (or no) attempt at customizing their responses for a given user. 

In addition, rule-based systems are inherently error-prone; the above “on-sale” 

rule might recommend a lower-priced item than an item currently in a user’s 

shopping cart!  

Of course, one can always start adding rules to try to generate different outcomes 

for different types of users.  Those attempting this approach would quickly find 

themselves with an unwieldy number of rules to maintain. 

Rule-based systems are very good for universal facts that are to be enforced, or 

applied, to the entire universe of possibilities.  They can easily express filter 

criteria or can be used for the initial “knowledge” in an inference engine when 

there’s little collected behavior to draw upon. 
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Figure 2: Rule-based system 

One drawback of rule-based filtering is the well-established fact that consumers 

do not always know what they like. Since the rules are written on the assumption 

that the knowledge engineer knows what the users will like, they are inherently 

error-prone. Rules can also be reverse-engineered from the study of past 

interaction data, though this is useful for possibly fine-tuning certain rule 

parameters and not necessarily for discovering new attributes previously 

unknown.  

Furthermore, since rule-based algorithms are usually at a loss when trying to 

explain why they have reached a particular recommendation, a consumer will 

always remain dependent on the agent to make “magical” recommendations for 

him (and potentially perpetuate a bad recommendation pattern).  This 

shortcoming, generally speaking, is related to any method that uses self explicated 

preferences (explicit statements of preferences such as “safety is the most 

important attribute”).  
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Self-Learning Systems - Collaborative Filtering 
Collaborative filtering uses a community-based approach.  In a nutshell, 

collaborative filtering is about discovering what people “like yourself” have liked 

before, and recommending those items. Instead of trying to determine the 

intrinsic characteristics of the product that would be desirable for a particular 

user, collaborative filtering tries to place the user into a “segment” and 

recommends the products that, historically, were liked by other members of the 

segment.  This has been likened to computerizing the “word-of-mouth” effect. 

Operationally, collaborative filtering predicts a person’s preferences as a linear, 

weighted combination of other people’s preferences.  The canonical collaborative 

filtering approach is shown in Figure 3.   
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P1,P2,??

P2,P4,P9

P1,P3,P7

P1,P2,P3

P1,P4,P6

P1
P2
??

P1
P2
P3

Strongest match

Recommend P3

The user

The Universe

products bought

 

Figure 3: Canonical collaborative filtering 

“The user”, let’s call him Bill, has purchased products P1 and P2 and wants the 

inference engine to recommend other products.  The collaborative filtering 

engine tries to match the user with one of the entries in its universe of users.  

After exhaustively checking prior purchases of other available users, the engine 

determines that the blue user is the one that most closely resembles Bill. Since the 

blue user has also purchased P3, it recommends this product to Bill.  Note that 

although we used “products-purchased” as the specific characteristic to classify 

users in this example, other characteristics, such as demographic profiles, can and 

have been used. 
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One of the problems of canonical collaborative filtering is that as the universe of 

users becomes large, the computational time required to allocate a user to a 

similar kind grows. In a nutshell, it doesn’t scale.  

To alleviate this performance problem, collaborative filtering toolkit vendors have 

taken the approach of creating like-minded segments in order to reduce the 

universe space. Therefore, when a new user is requesting a recommendation he 

or she is allocated to a “segment” and provided with the recommendations for 

that segment. 

There’s a range of approaches used by collaborative filtering solutions that differ 

in how the user is “allocated” to a segment.  These different implementations 

have implications on two fronts: 

(1) Efficiency – some methods aim at comparing every user with every 

other user to determine proximity (i.e. nearest neighbor approaches).  

Since this approach is very intensive, optimization approaches have 

been attempted.  These optimizations create clusters of users and 

then allocate a target user based on key statistics for the cluster.  The 

goal is to reduce the order of magnitude of comparisons from O(N) 

to O(C) where N is the number of users, C is the number of clusters, 

and C<<<N. 

(2) Accuracy – by segmenting users in clusters, the intra-cluster variance 

affects the performance of the results.  For borderline target users, 

(those that barely make it into a cluster), the potential error in 

assigning the cluster’s recommendations to the target user might be 

nontrivial. 
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This “segmented” approach has its drawbacks. First, and foremost, a user might 

be on the “boundaries” of a segment and therefore anything we recommend will 

not be exact.  Second, since we are generating segments using an averaging 

process, individual user information is being lost.  Third, the segmentation 

optimization for the collaborative filtering approach is implicitly built on the 

assumption that the population is pseudo homogenous and that such segments 

can be reasonably defined.  If the population is very heterogeneous, and crisp 

segments cannot be identified, the within-segment error in recommendations will 

be large. Finally, another concern with the segmentation approaches is that it 

usually works best when the subjects are relatively static over time. For users that 

change their preference patterns frequently, re-segmentation is necessary, which 

increases the resources required for the system. 

Another drawback of collaborative filtering (in all of its forms) is that it is not 

completely self-sufficient. Since it relies on historical data to make 

recommendations, how can it ever recommend a brand-new item? Artificial 

mechanisms need to be employed so that systems built around collaborative 

filtering can be jump-started with new items. This exercise, however, is error-

prone. 

A very popular site that uses collaborative filtering for its recommendations is 

Amazon.com.  

As shown in Figure 4, upon entering the site and selecting the recommendations 

option the user is presented with a set of recommended items for purchase. In 

the particular example of Figure 4, a book about fly-fishing in Vermont is 

recommended.   
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Figure 4: Amazon.com collaborative filtering-based 

recommendations 

Note the prominent Get Better Recommendations message, with the “rate the 

selections” link in the bottom left corner of Figure 4.   Rating past purchases or 

recommended items is a method of obtaining feedback from the customer about 

past recommendations.  By rating the selection, the user may move himself out of 

his current target segment and into a new one, with potentially different 

recommendations. 

Note that Figure 4 does not tell us why the Vermont fly-fishing book has been 

recommended. However, with a little bit of work we can find out a possible 

reason.  Figure 5 shows the complete entry for the recommended book.  

Circled in red is a book the user had bought in the past. Note that there’s a list of 

books that “similar customers” bought in conjunction with the recommended 

book. This is why Amazon is recommending the Vermont book.  However, 
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notice that in doing so the engine has neglected the fact that this particular user 

lives in Massachusetts, does not own any other book about Vermont, and likes 

some variety in the topics he reads.  

 
Figure 5: Understanding why in Amazon.com... 

Attribute-Based Models (a.k.a. Individual Models) 
An alternative to the collaborative filtering approach is to construct attribute-

based inferences. In these models, both products and consumers are given 

different attributes that are meant to represent the inherent qualities of the 

products (or preferences). Products are selected based on the user’s specific 

preferences. 
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Figure 6 shows how selection (inference) works. Given a universe of attributes, 

which are commonly defined and shared in the system, each user has what we call 

an “attribute signature”, which is basically her particular preference for each 

attribute. In the example, this particular user has a loading of 0.3, 0.6, and 0.2 for 

attributes one, two, and three, respectively. There are only three attributes in this 

system. 

 
Figure 6: Attribute-based selection example 

Attributes one, 
two, and three in 
the user’s model.

Product 
recommendation 
algorithms 

The product catalog. 
Each product rated on 
the three attributes. 
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Each product is also rated along these different attribute “dimensions”.  Selecting 

that product whose attribute signature is “closest” to the user’s attribute signature 

is the job of the recommendation engine. Note that the center product (in red) 

has an attribute signature that is almost identical to the user’s.  

Our example is an admittedly simplified scenario, as there can be many more than 

three attributes and it’s not necessary that all products be rated on all attributes or 

that an user have a signature1 that contains all attributes. Still, it is representative 

of the general idea.  

In essence, individual-based models delve deeper in the “constituents” of a 

product and are more concerned with the “reason” why a user likes or dislikes a 

particular product.  This makes individual-based models more flexible and, 

usually, more accurate than other prediction mechanisms.  In addition, individual-

based models can immediately recommend newly added products, as long as 

these products have been appropriately “attributed”.  This means that they do not 

suffer from the “cold start” problem that plagues collaborative filtering solutions. 

Both collaborative-filtering and individual-based approaches need information 

about the individual user.  In the case of collaborative-filtering, the information 

needed takes the form of a series of population ratings on existing products.  In 

the case of individual-based approaches, the information takes the form of a set 

of attribute weights.  For collaborative-filtering, however, it is also necessary to 

know (and consider) the information for the rest of the users.  Pure individual-

based models need not consider this. Of course, hybrid mechanisms are usually 

the most powerful as they can tailor products on an individual basis and generate 

leads on a community basis.   

                                                 
1 A collection of ratings on each of the attributes known to the system is called a “signature”. 
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An important factor to consider is that new products and changing user 

preferences are relatively simple problems for individual-based models but 

complex for collaborative-filtering approaches. 

To date, individual-model solutions have been less common than collaborative 

filtering approaches, possibly due to the fact that coming up with the right 

attributes and diligently tagging content is an arduous and expensive task. 

Selecting the right attributes to use to correctly categorize a product catalog is a 

difficult undertaking, which runs the risk of misspecification. For example, a 

product catalog for computers might never add “case color” as one of the 

attributes, for traditionally computers have been only about power, speed, and 

capacity. Yet, as the artistic design of the newer models of personal computers 

have proven, the exterior’s color is important for a segment of the PC-buying 

population (which now includes people that might have not cared for a computer 

in the past).  

In addition, individual-model solutions are harder, computationally, and more 

difficult to represent because the matrix of attributes can become very large and 

thus can be difficult to maintain and process. This computational complexity has 

prevented truly individual-based approaches from reaching the mainstream.  It is 

only recently that advances have been made to optimize these computations and 

make these approaches more feasible. 

Which approach to take? 
Given the different possibilities for performing customization, a sensible question 

to ask is which approach is applicable for which situation. This section will 

explore this issue. 
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We need to consider the following parameters when selecting a personalization 

approach: 

•  The size of the decision space, i.e. the number of decisions that need to 

be made; and 

•  The expert’s knowledge of the decision domain. 

•  The characteristics of the user population 
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Figure 7: How to select personalization methods  

Figure 7 shows which customization to apply depending on these three factors2. 

Simple Customization 

Simple customization is appropriate when the decision space is small and we have 

a great deal of knowledge about the domain.  . 

                                                 
2 Note that this heuristic is approximate. 
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Rule-Based Customization 

Rule-based customization is appropriate when the decision space is large and we 

have a great deal of knowledge about the domain.  If we are extremely proficient 

in the domain of personalization, we can completely specify all the possible 

patterns in personalization that might appear and can define the exact rules that 

will yield the best possible content for the user based on past experience.   

This approach is usually used by “Expert Systems”. These systems, popular in 

years past, usually have a large mass of highly developed rules regarding a 

particular domain. These rules usually take years to build by a team of true world 

experts on the subject.  It is important to note that the domains for which these 

systems are built usually have no (or few) surprises and therefore most of the 

answers can be predicted given a set of preconditions. Expert systems in the area 

of medical diagnosis, petroleum exploration, and computer system configuration 

have all been built with reasonable success. 

The domain of one-to-one web marketing personalization efforts, however, is far 

from being known.  Trying to estimate the tastes and desires of users is an 

incredible difficult task, and one where there are hardly any universally valid rules 

(or for that matter, completely deterministic rules).  

Learning System 

Learning systems are appropriate when the decision space is large and we have 

little knowledge about the domain. 

The two learning systems that we consider are collaborative filtering and 

individual-based systems.  To decide which type of learning system is best, we 

need to evaluate the target users and the content universe. 
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Individual-based models embrace the difference in people and make no (or little) 

assumptions about the similarity between users. They recognize the inherent 

characteristics of content (i.e. which attributes it contains and which ones it 

doesn’t) and of users (which attributes they like and which ones they don’t). 

Using this information they provide the best product for each user by computing 

the distances between the content’s characteristics and the user’s preferences.  

People, and children in particular, have changing and varying tastes.  This means 

that each user’s preference profile will change frequently.  In such a setting, 

collaborative-based filtering has been shown to consistently under-perform 

individual-based models.  

While people have changing preferences, they can also behave in herd-manner.  

Trends become in-vogue, styles become fashionable, and the latest action figure 

is all you see on television (and all you want to see on television!).  In this case, 

many users are “joined” in their likes/dislikes and thus the collaborative filtering 

approach can shine.   

Focus of this work 
Within the different alternatives for personalization, individual-based models are 

the most promising and potentially most accurate. This work will focus on the 

recommendation engine component of these methods. 
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C h a p t e r  3  

SIMILARITY AND NOVELTY 

 

As explained before, this work will concentrate on the recommendation engine 

part of personalization systems. This chapter will describe the general idea behind 

individual-based model recommendation systems and its shortcomings. 

Similarity Ratings 
Given a set of products, each of them rated on a collection of attributes, plus a 

profile of attribute-ratings preferences for a user, the problem of 

recommendation can be reduced to finding a subset of products that best match 

the user’s preference profile. In essence, the problem is reduced to searching the 

product space for all those products that are “similar” to the ideal product. 

For example, the user’s ideal product in Figure 6 has ratings of 0.3 for the green 

attribute, 0.6 for yellow, and 0.2 for pink. Subsequently, out of the universe of 

three products, the recommendation engine finds the one that is most similar to 

this ideal product. Measuring this similarity can be done via a number of 

mathematical measures, and recommendation can follow from these 

measurements. For example, recommend the product whose geometric distance 

to the ideal product is shortest. 

Shortcomings – The “Myopic Agent” effect 
Using similarity alone for recommendation agents has some drawbacks. Let’s take 

the case of a brand-new user. In this case, the agent knows absolutely nothing 
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about this user. It is therefore hard-pressed to make any valuable 

recommendations, and it has roughly a 50/50 chance of recommending a 

product that makes sense. If the user didn’t like the product, a somewhat 

different product will be presented until the user likes the selection. Once a 

successful selection has taken place, however, the “similarity policy” will 

dominate and the agent will tend to recommend products that are similar to the 

one that it knows the user likes. 

ATTR-1
($)

ATTR-2
(Uniqueness)

1 2

3 4Start

undesirable

desirable

Iso-preferences curves

Very uniqueVery common

Very 
expensive

Very 
inexpensive

5
6

7

 

Figure 8: Myopic agent effect 

Figure 8 shows a diagram to illustrate this problem. It shows an admittedly 

oversimplified product universe space that has been rated on only two attributes 

(cost and uniqueness). Each product in the catalog from which the agent chooses 

can be placed in this plane. Furthermore, there are groups of products that share 

the same characteristics. Let’s imagine for a moment that the products are rare 

coins and that our user is a coin collector. We can draw the product space and 
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define the iso-preferences3 curves for this particular coin collector. In this case, 

this collector does not care for middle-of-the-road coins, but rather prefers either 

very unique (even if expensive) or very common (only if inexpensive) coins. After 

drawing the isopreferences curves, as shown in Figure 8, we see that there exists a 

“band” of undesirable space in between two bands of desirable products. 

If we were using a similarity-based agent to recommend products from this 

catalog to this collector, we might experience what we have called the “myopic 

agent effect”. The first product recommended happened to lay, out of random 

luck, in one of the undesirable groups (1). The agent then attempts to “get away” 

from those products and lands on yet another undesirable group (2). This 

sequence continues until finally the agent finds a product that the user actually 

likes (5). At that moment, however, that agent is prone to continue to 

recommend products from that group (iso-preference curve) until it exhausts all 

of them, at which time it will be search time again.  

Unfortunately, during all this time the agent failed to recognize that there might 

be other areas of the feature space (such as the one shown with a red arrow in 

Figure 8) that the user might also enjoy.  

The problem evidenced before is commonplace with locally optimum approaches 

such as the one shown. Product recommendation engines that narrow mindedly 

zero-in on the feature space region where some products have been liked and 

ignore the rest of the space are bound to suffer from this problem. If the user 

does not have any knowledge about the product universe and relies solely on the 

agent’s advise, this approach also results in no learning on the agent’s part, as the 

user cannot really “correct” any of the agent’s recommendation. 

                                                 
3 Any product on the curve is “as desired” as any other product on the curve. 
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Furthermore, the above discussion has always implicitly assumed that both the 

marketplace and the user’s preferences remain static over time. This is hardly the 

case in today’s Internet economy. Products are introduced constantly and they 

immediately enlarge the product universe that product recommendation engines 

need to consider. In addition, user’s preferences do indeed change and that poses 

a new set of problems to the engine as new areas of the feature space might now 

become desirable. 

ATTR-1

ATTR-2

Start

Hits regarding Java, 
the programming 
language

Hits regarding Java, 
as in coffee

Hits regarding Java, 
the island

1
2

3

2’

3’

99999

 
Figure 9: Biased product catalogs 

There’s yet another situation where similarity-only agents fail to deliver the right 

set of results to end-users. Consider the situation depicted in Figure 9. In this 

case, the product “catalog” is disproportionably large for one type of products 

and very small on other, equally “desirable” products. A typical example of this 

phenomenon can be found everyday in web-page searches. For instance, a search 

for the keyword “java” might return a large number of hits for the programming 

language interpretation of the word, and none (or few) about the beverage or the 

island interpretation. 
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Furthermore, if a user happens to “like” a product in the programming language 

category, further requests for recommendations will undoubtedly revolve within 

the same homogeneous category. When product catalogs are even and well 

segmented (i.e. a few products well discriminated by the selected attributes) this 

problem is important, but not critical, as the user would exhaust one (small) 

group and only then move to a different desirable group (possibly increasing his 

satisfaction level with the change). However, when product catalogs are very 

biased (i.e. a large number of products of one type and a small number of 

products of different-but-related categories) this problem can be acute, since 

exhausting the large product group is impractical and the user would in fact never 

be recommended products from other categories but the one the agent is “sure” 

the user likes.  

 This is exemplified in Figure 9, where the agent starts in the “programming 

language” group and continues to make its recommendations 2, 3, …, 99999 

from that same group. Notice that these recommendations will most likely 

contain redundant information, and this agent will not be able to detect that. 

Contrast this return set with the case where the agent actively seeks products 

from different segments, as depicted by the sequence (1), (2’), and (3’). In this 

case, the user will be presented with a variety of products from distinct product 

regions, and the agent will in fact learn which region it needs to concentrate its 

next search on. 
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C h a p t e r  4  

INJECTING ORTHOGONALITY - A HYPOTHESIS  

 

A different approach to recommendation engines is presented, rooted on the 

concept of exploring the feature space while learning about the user to detect 

areas of interest and avoid the problems described in previous chapters. 

A hypothesis 
Consider for a second what would happen if we were able to device a 

recommendation agent that would “explore” the entire feature space before 

committing to any given groups of products. In our example, for instance, this 

agent would be able to identify the two desirable areas and thus recommend 

products from both. 

We contend that such an approach would, over the long run, outperform a 

typical similarity-based agent. We have called this special agent an “active learning 

agent”. Such an agent would initially pro-actively explore the feature space by 

recommending products that are different from products it knows the user likes. 

In such an environment, the agent would learn about the entire space and later 

revert to similarity-based recommendations, once the entire product space has 

been “sampled”.  

Figure 10 shows a high-level representation of the logic behind the agent’s 

learning process. In essence, when a new user enters the system, the agent will 

know very little about the environment and thus will on purpose recommend 
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dissimilar products to the ones it has detected the user likes. Once the agent 

determines that it knows enough about the user’s preferences and the product 

space, a standard similarity approach can be used. 

Record user’s 
response to previously 
recommended product

Do I know 
enough 
about 
user?

Recommend using 
orthogonal approach

Recommend using 
similarity approach

 

Figure 10: Learning flow with both similarity and 
orthogonal approaches 

We contend that once we get to use the similarity approach, we have learned 

more about the feature space in relation to the user’s preferences and therefore 

the agent would be able to make better recommendations. 

Some obvious challenges 
The approach presented above has a couple of obvious challenges. The first 

problem has to do when deciding when to switch from “exploring the space” to 

“using it”. In other words, when do we make the change from recommending 

dissimilar products to simply using the information that we collect to recommend 

products that follow that profile? 
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This work will not attempt to address this issue, except to state that generic 

statistical metrics can be used to estimate the “confidence” of the agent about the 

entire product space and use that as well as an appropriately tuned threshold to 

automatically switch from orthogonality to similarity. We believe that determining 

how to optimally switch from one mode to another would only make sense once 

the goodness of the approach is proven, not before. This work attempts to prove 

the general approach leaves this detail of selecting the appropriate threshold for 

further research.  

In addition, instead of selecting this threshold as a hard and fast rule systems can 

be designed to provide a continuous function that will measure both the degree 

of similarity as well as the expected learning from any given product to be 

recommended. Then, the agent could make complex decisions like deciding to 

recommend a product that is “only 10% less good than the best one” but will 

“yield 40% more expected learning than the best one”. Furthermore, for agents 

that can recommend multiple products at a time, a mixed approach can be used 

which yields the best solution to this dilemma. Namely, some of the 

recommended products can follow the “similarity” approach while the others can 

follow the active-learning approach. 

On account of the long-term nature of the benefits of this approach, it should be 

obvious that for short-lived interactions (i.e. less than 5-10 recommendation 

feedback pairs) are not suitable for this approach. The rationale is simple: if you 

only have a couple of chances of recommending something to a user, try to do 

your best as soon as possible, as you won’t have time to explore the space and 

then recommend. 

Last, but certainly not least, we need to define what “orthogonal” means. So far 

we have described this new approach recommendations as “dissimilar”, 
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“different”, or “orthogonal”. We have yet to explain how exactly we compute this 

orthogonality factor for a product. This issue concerns us next. 
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C h a p t e r  5  

MEASURING SIMILARITY AND NOVELTY  

 

This chapter describes the computation of our version of orthogonality based on 

the measures that traditional recommendation engines provide. 

A Simple Recommendation Engine 
In order to be able to prove or disprove our hypothesis with the fewer number of 

unknown variables, we decided to build a very simple, straightforward 

recommendation engine. Commercial-grade recommendation engine products 

are substantially more sophisticated. Suggestions for future work with one such 

product are given in a later chapter. 

Linear distance between two profiles 

Our recommendation engine works on products that the user has liked. For such 

products, the engine examines the attributes of the products and adjusts the 

user’s “histogram” of values for each attribute, as shown in Figure 6. Figure 11 

shows the details of the distance calculation for a given user profile and a 

particular hypothetical product, on a four-attribute space. 

Notice that we are not interested in the relative positions of the user’s preferences 

in the attribute scale, but rather in the absolute difference. Thus, it is assumed 

that the model under which the user operates is an “ideal point model” where the 

preferences along an attribute are not monotonic but rather with a sigle peak 

(more sugar in my coffee is better up to some point at which it becomes worse). 
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In addition, a simplifying assumption is that deviations from the ideal point in 

either direction are equally unappealing. Because of the non-monotonicity 

assumption, this simple engine would not work well in an environment in which 

preferences are monotonically increasing (when higher levels are always better).  

In such an environment, this engine will not be able to favor a product whose 

attributes are higher than the user’s (assuming higher is strictly better), yet at 

distance identical to that of another product, whose attributes are all lower than 

the user. In the example of Figure 11, the product shown, {0.5, 0.2, 0.0, 0.7} with 

a distance of 1.3, would be identical to a product {0.9, 0.2, 0.0, 0.7} also with a 

distance of 1.3. If the values of attribute a1 imply higher-is-better, this engine 

cannot recognize that.   

1.0

0.6

0.2

0.5

0.2

0.5

0.0

0.7

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

0.6 - 0.5 = 0.1

1.0 – 0.2 = 0.8

0.2 – 0.0 = 0.2

0.7 – 0.5 = 0.2

1.3
User’s 
profile

Product 
profile

 

Figure 11: Computing the similarity by profile 
distance 
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Distance-Based similarity (The Myopic Agent) 

At any given time, the user has a certain profile (or desirability) for each particular 

attribute. Each product contains a specific value for each attribute. Thus, in order 

to compute the “similarity” or “desirability” for this particular product and user 

combination, we simply compute the distance between the product’s attribute 

profile and the user’s attribute profile. 

Once we obtain the desirability for each product, this engine simply selects the 

product with the highest desirability (that is, the one with the shortest distance, or 

closest to the user’s profile). We have termed this behavior the “myopic” agent. 

Distance-Based Novelty (The Active Agent) 

Computing novelty in this simple engine is straightforward. The same identical 

computation takes place, yet at the time of recommending a product we select the 

one with the least desirability (that is, the one that is farthest from the user’s 

profile).  Note that a further improvement can be achieved if the engine would 

take into account not only the desirability but also its confidence / knowledge 

about the attributes in questions.  

However, in order to form a recommendation engine we need to understand how 

to switch from exploring the space (i.e. recommending on novelty as explained 

above) and recommending on similarity using the information collected in the 

exploratory phase. We introduced this “switching” value as a parameter and ran 

our experiment with different values. This agent would therefore recommend the 

first N products based on novelty, and the rest of the products based on 

similarity. We have named this agent the “active” agent, or the “learning” agent. 
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C h a p t e r  6  

EXPERIMENTAL SETUP 

This chapter describes our experimental setup, and presents the metrics that 

we will use to measure the results. 

The design of the experiment 
The purpose of the experiment was to validate or refute our active learning 

hypothesis. We therefore created two recommendation agents: the myopic agent, 

using only similarity as its guide; and the active agent, which first explores the 

space as described before. Comparing these two would allow us to validate/refute 

the hypothesis. 

To recap, we defined and coded the following agents: 

•  Myopic agent: this agent uses the standard similarity-based mechanism, as 

explained in the previous chapter. 

•  Active agent: embodies our hypothesis, and is calculated as explained in 

the previous chapter. 

In order to test the performance of these engines, we assembled different datasets 

representing products along with their attributes, as well as users and their ratings 

for each product. To keep the experiment manageable, we only allowed two 

possible responses, LIKE and DISLIKE.  
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The overall flow of the experiment would be, therefore, to loop user by user, 

recommending products in the order mandated by the agent, until all products 

had been recommended and all users had been exhausted. We can then measure 

the hit profile, namely whether an agent recommended a liked or disliked product 

at each iteration. In the following sections we will describe all these elements in 

detail. 

The Dataset 
A separate program to exhibit clustering as required by this work generated the 

dataset. The purpose of this thesis was not to prove/disprove the existence of 

such clustering in real-people responses and therefore we fixed that variable by 

generating a dataset that contained six different population classes each with six 

clusters in them. The dataset also contained 512 products. 

Products are defined by 9 binary attributes (i.e., Xi =0,1 for  I=1,…,9).  There 

are, therefore, 29=512 possible products. Customers are defined by a vector of 

betas. Betas are bounded by [-1,1]. “Hybrid customers” are those that can behave 

according to two different personalities.  These customers have two sets of betas 

and their utility for a given product is the maximum utility from the two sets. 

The utilities are defined by the inner product of the beta vector and the product 

vector. We introduced error terms.  The customer will purchase a product if its 

utility for the product plus an error term is greater than zero.  Error terms are 

normally distributed with mean zero. 

Generating the data: 

The nine attributes are divided in three sets: 

A = [1,2,3] 

B = [4,5,6] 
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C = [7,8,9] 

 

We then defined six different clusters of customers, each with its own preference 

for the attribute sets mentioned before, as follows: 

Cluster N: preferred set > intermediary set > low set 
Cluster 1: A > B > C 

Cluster 2: A > C > B 

Cluster 3: B > A > C 

Cluster 4: B > C > A 

Cluster 5: C > A > B 

Cluster 6: C > B > A 

 

In each cluster, the Betas for the preferred set are drawn from an uniform 

distribution, U[1/3, 1], Betas for the intermediary set are drawn from U[-1/3,1/3] 

and Betas for the low set are drawn from [-1,-1/3]. 

Hybrid customers have two utility functions, and their actual utility is the 

maximum of the two functions.  The six clusters used in this experiment are the 

following: 

Hybrid Cluster1 = Cluster 1 and Cluster 4 

Hybrid Cluster2 = Cluster 2 and Cluster 6 

Hybrid Cluster3 = Cluster 3 and Cluster 6 

Hybrid Cluster4 = Cluster 4 and Cluster 5 

Hybrid Cluster5 = Cluster 5 and Cluster 1 

Hybrid Cluster6 = Cluster 6 and Cluster 1 

 

There are twenty customers in each of the six clusters defined above.  A 

randomly distributed error with mean zero and variance 0.4 was added to each of 
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the utilities before making the choice.  Choice was = 1 if the net utility (real utility 

+ noise) was greater than zero. The data with this error term was named “Small 

Error”, or SE subjects. 

We also injected a randomly distributed error with mean zero and variance 1.4 to 

each of the utilities before making the choice.  Choice was = 1 if the net utility 

(real utility + noise) was greater than zero. The data with this error term was 

named “Large Error”, or LE subjects. 

Similarly, we introduced small and large errors for the hybrid subjects thus 

resulting in two more datasets, the Hybrid Small Error (HSE) and the Hybrid 

Large Error (HLE) subjects. 

In summary, the entire product dataset consisted of 512 products, each with 9 

attributes. The subject (rankings) data consisted of four different subject types: 

SE, LE, HSE, and HLE. Each subject type had six clusters and each cluster 

twenty subjects. In total, we have 480 subjects (4 x 6 x 20). 

The flow of the experiment 
Given an agent type, the experiment consisted in sequentially process each user in 

the rankings set. After the first product is selected at random, the rest of the 

products are presented in the order recommended by the agent, for each user. We 

present 20 products in total to each user. That is, we do not exhaust all the 

products (512 recommendations).  

Measuring the results 
After each user is completed, a hit profile is calculated for this user/agent 

combination. A hit profile is simply one row of the complete hit matrix for this 

agent, as shown in Figure 12. 
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……………

1…00User N

0…11User 2

1…10User 1

Iter. 161…Iteration 2Iteration 1

……………

1…00User N

0…11User 2

1…10User 1

Iter. 161…Iteration 2Iteration 1

User 1 disliked our first recommendation, liked the second one,…, and liked the last one.
User 2 liked our first and second recommendations,…, and disliked the last one
User N disliked our first and second recommendations,…, and liked the last one  

Figure 12: A hit matrix for one agent 

When we are interested in evaluating the results for different types of users, we 

compute the hit matrix for each user cluster. Given a user cluster, we average all 

the columns (one per iteration) and we obtain a single vector, the results vector, 

which represents how well this agent did on this particular “type of user”. The 

value of each element of this ordered vector represent how well the agent did in 

this particular iteration. Notice that this value is in the range [0…1]. 

Once we have results vectors for each of the agents/user types combinations, we 

can compare the results of each agent for a given user type by plotting them on a 

graph. Generally speaking, we expect the myopic agent to have better 

performance in the first recommendations but overall to under perform the 

active agent. We expect the active agent, on the other hand, to start slower than 

the myopic one, as it is exploring the space, but jump directly from cluster to 

cluster as required thus providing a better overall performance. 
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C h a p t e r  7  

RESULTS 

This chapter presents the results of the experiment. Graphically, results are 

included for all subject types and clusters. 

Running the Experiment 
All the data was ran through a myopic agent (a.k.a “learning 0”, or “L0”), an 

active learning agent with a switching parameter of 5 (a.k.a. “learning 5” or “L5”), 

and an active learning agent with a switching parameter of 10 (a.k.a. “learning 10” 

or “L10”).  

Hit matrices were computed for all the 480 subjects lumped together, for each 

four subject types separately, and for each six clusters independently within each 

subject type. Results for L0, L5, and L10 were displayed graphically, and in order 

to better compare, a logarithmic trend line was created for each.  

All subjects 
The comparison for all 480 subjects is shown in Figure 13. As expected, we see 

the L0 agent outperforming the active agents in the beginning, but both L5 and 

L10 eventually trend towards a higher accuracy value. It is interesting to note that 

in this graph, as in many others that follow, the L5 agent outperforms L10. We 

believe this phenomenon might be due to the fact that since we are only 

recommending a total of 20 products, the L10 agent spends half of these 

recommendations “learning” (that is, purposely recommending dissimilar 

products). The remaining 10 recommendations are not enough to “lift” the trend 
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high enough (to outperform L5). We will see, however, that there are cases where 

the extra learning still does prove better even in this short-run case. We believe 

that had we ran the recommendation experiments longer the L10 would in all 

cases outperform L5. 
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Figure 13: Results - all subjects 

LE subjects 
Figure 14 shows the results for all large error subjects. Notice the large swings in 

the raw data and the pronounced increase in accuracy when the learning agents 

change from “exploring” to “recommending”, at iterations 5 and 10, respectively. 
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Figure 14: Results - LE subjects 

 

LE clusters 

Figure 15 shows the results for the six large error clusters. Notice how for cluster 

LE1 the myopic agent actually outperforms the others. This is the only case 

where the active agents are not the most accurate. In the case of LE1, it is 

possible that the first product selected (at random) falls exactly in the cluster 

where those subjects have a preference, and thus the myopic agent concentrates 

in recommending similar products, gaining high accuracy marks. 
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Figure 15: Results - LE clusters 
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SE subjects 
As expected, the small error subjects, shown in Figure 16, display much smaller 

swings in the raw data. It is very apparent in the graph where the learning agents 

make the switch to recommending on the learned information.  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to 
similarity for L5

switch to 
similarity for L10 SE

 
Figure 16: Results - SE subjects 

SE clusters 

Figure 17 shows the six graphs for the SE cluster subjects. The SE3 graph shows 

a case where the myopic agent probably landed in a part of the product space 

sufficiently different from the preferred sections and thus it took some time to 

“find” the right products to recommend. This behavior is one of the 

characteristic drawbacks of similarity-only recommendation engines. 
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Figure 17: Results - SE clusters 
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HLE subjects 
The hybrid large error data is probably the most complex of all the sets, as the 

subjects has large errors plus the “split personality”. In this case we can see the 

value of larger learning phase, as L10 edges out L5 as shown in Figure 18. 
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Figure 18: Results - HLE subjects 

HLE clusters 

The results for each of the HLE clusters are shown in Figure 19. In several 

occasions we find the L10 is valuable and the best predictor.  HLE2 and HLE4, 

specifically, show the difference between L10 and the rest. 
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Figure 19: Results - HLE clusters 
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HSE Subjects 
As before, this dataset also proves the higher accuracy of a longer exploratory 

phase, as shown in Figure 20. In addition, given the relative lower degree of noise 

(small error), our simplistic engine can better predict the users preferences, thus 

producing better results overall. 

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to 
similarity for L5

switch to 
similarity for L10 HSE

 
Figure 20: Results - HSE subjects 

HSE clusters 

Figure 21 shows the results for each of the six HSE clusters. Once again we can 

see that in several cases the longer learning phase proves useful to decipher these 

subject’s split personality characteristics. 
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Figure 21: Results - HSE clusters 
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C h a p t e r 8  

NEXT STEPS: USING A COMMERCIAL ENGINE 

Although not implemented in this work, a natural follow-up would be to 

replace our simplistic recommendation engine for a full-fledged commercial 

engine, and re-test. This chapter presents a detailed analysis of how that could 

be accomplished with one of the leading recommendation engines in the 

market today. 

The Recommendation Engine 
Even though current recommendation engines are similar in the semantics of 

their metrics, we will base this chapter on the specific information that derives 

from the recommendation engine we selected for this experiment. While we do 

so at some cost in terms of general applicability of the results, we hope that the 

increase in details that using a specific engine will allow for will more than 

outweigh the small incompatibilities for applying the results of this work 

universally. 

We selected SaffronOne, from Saffron Technology in North Carolina, as the 

engine of choice for this work. SaffronOne was one of the few engines available 

that had a flexible enough programmatic API. Without such flexibility we would 

not have been able to reconfigure the selection algorithms to match our 

hypothesis. In addition, SaffronOne’s choices of technology platform, design, and 

speed were compatible with our own experimental environment. 
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SaffronOne  
The technology behind most recommendation engines are closely guarded 

secrets, since they embody the company’s competitive advantage. SaffronOne is 

not an exception. Therefore, we have focused this chapter in explaining what are 

the metrics that we obtain from SaffronOne are rather than describing how 

exactly these metrics are computed.  

SaffronOne has the concept of an “agent”, which loosely equates to a personal 

advisor for each user. It also contains a concept of a “memory”, or essentially a 

history of all the past interactions the user has had with different products. In 

addition, products are outfitted with “attributes” that characterize them.  

An agent learns about a user’s preference by observing an user’s response (e.g. 

“LIKE”) on a given product (more accurately, a vector of attributes). The 

observe() API call is used for that purpose, as shown in Figure 22. 

Internally, the SaffronOne agent is keeping track of the associations between the 

responses and the attributes, and in that way it learns about the user’s preferences 

for a given response. 

observe(LIKE/DISLIKE, )

User selects 
LIKE or 

DISLIKE

Each product has a vector of 
attributes that characterizes 
it. This vector is sent to the 
agent so that it can learn.

SaffronOne’s agent internally 
computes a “model” for the 

user, based on the 
associations between 

responses (LIKE/DISLIKE) 
and attributes

observe(LIKE/DISLIKE, )

User selects 
LIKE or 

DISLIKE

Each product has a vector of 
attributes that characterizes 
it. This vector is sent to the 
agent so that it can learn.

SaffronOne’s agent internally 
computes a “model” for the 

user, based on the 
associations between 

responses (LIKE/DISLIKE) 
and attributes  

Figure 22: Learning in SaffronOne through the 
observe() call 
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In order to obtain the agent’s rating for a given product, SaffronOne provides the 

imagine() call. As shown in Figure 23, the application is responsible for selecting 

first the product it wants ranked and second the type of response (e.g. LIKE, 

DISLIKE) it wants the ranking for. SaffronOne keeps track of associations by 

response types and thus an imagine() call with “LIKE” as the response target 

might yield a completely different result than a call with “DISLIKE”.  

imagine( LIKE/DISLIKE, )

imagine( LIKE/DISLIKE, )

imagine( LIKE/DISLIKE, )

The application selects 
which “response” it wants 
to obtain ratings for (e.g. 

LIKE or DISLIKE).We ask the agent to imagine the 
strength of an associat ion between 

a product and a response.
If we have mult iple products, we 

do this for each of them.

Indication

Credibility

Experience

Belief

imagine( LIKE/DISLIKE, )

imagine( LIKE/DISLIKE, )

imagine( LIKE/DISLIKE, )

The application selects 
which “response” it wants 
to obtain ratings for (e.g. 

LIKE or DISLIKE).We ask the agent to imagine the 
strength of an associat ion between 

a product and a response.
If we have mult iple products, we 

do this for each of them.

Indication

Credibility

Experience

Belief

 

Figure 23: Rating different products in SaffronOne 
via imagine() call 

Each imagine() call yields one primary measurement, Indication, and three 

secondary ones: Credibility, Experience, and Belief. 

•  Indication is a measure the similarity value, and the one most used in the 

recommendation engines.  
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•  Credibility is a measure of both an individual’s strength of “belief” along 

with that individual’s level of “experience”. It is equal to Experience times 

Belief. 

•  Experience measures the degree of familiarity between the attributes and 

specific associations. New features and new feature combinations will be 

calculated as lower levels of experience, whereas associations and features 

that have been seen many times before will translation into higher levels 

of experience. 

•  Belief measures the extremeness of the indications. One very strong 

probability is more credible than a number of weak ones. This is akin to 

“clarity”. If one perspective looks like noise, it should be weighted less 

than another that more clearly perceives a strong indication. 

Combining different responses into one metric 
As described above, SaffronOne provides a set of metric for a given response 

type. Without getting ahead of us, our experiment (to be explain in subsequent 

chapters) requires the user to select one of two possible responses, LIKE or 

DISLIKE. The SaffronOne agent will therefore learn according to these two 

different response types. However, when we need to recommend a new product 

to the user we must find a way to combine the metrics from both response types 

into a single number that we will use to rank all the products. 

Indication 
The first measure we will define attempts to capture the overall “similarity” 

strength for a given product. This metric will be used to select products in the 

baseline version of our experiment, and resembles the selection criteria that 

traditional recommendation engines employ. 
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As Figure 24 shows, the indication value is computed via two consecutive 

imagine() calls for the same product, one with each possible value of the response 

type (LIKE and DISLIKE). These calls result in two sets of {indication, 

credibility, experience, belief} metrics, of which we only utilize the indication 

values. The overall product indication is thus defined as the difference between 

the indication that the product is LIKEd and the indication that the product is 

DISLIKEd. Since indication values lie in the [0…1] range, indication values lie in 

the [-1…1] range. 

imagine( LIKE,         ) 

imagine( DISLIKE,         )

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Indication =

IndLIKE - IndDISLIKE

imagine( LIKE,         ) 

imagine( DISLIKE,         )

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Indication =

IndLIKE - IndDISLIKE

 

Figure 24: Computing Indication from Credibility 
for LIKE and DISLIKE 

Novelty 
The second metric we need to define is needed to explore our hypothesis of an 

“exploratory” agent. We have used SaffronOne “experience” metric for this 

computation. The idea is to come up with a number that will represent this user’s 

familiarity with the product we are ranking. In a sense, novelty is the opposite of 

experience, as defined in this work. With such a novelty measure we can embody 

our active learning hypothesis by sorting all the available (still not shown) 

products on their novelty values and selecting the product whose novelty is 

highest.  
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Figure 25 shows the computation of Novelty. Experience values start at zero and 

grow logarithmically towards one. In order to combine our learned values for 

both LIKE and DISLIKE responses, we first return the experience levels to their 

raw values via the exp() function. Notice that in this case we add both experience 

levels as we it is not relevant whether we LIKEd or DISLIKEd the product, but 

rather whether we “have seen” it before. Once we have added the raw experience 

levels we compute the logarithm to bring the value back into the [0…1]. Finally, 

since Novelty is a measure of “non-experienced” we invert the value subtracting 

it from one. Thus, Novelty values lie in the [0…1] range whereas low values 

mean well-known products and high values means unexplored territory. 

imagine( LIKE,         ) 

imagine( DISLIKE,         )

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Novelty = 1 - ln[ exp(ExpLIKE) + exp(ExpDISLIKE) ]

imagine( LIKE,         ) 

imagine( DISLIKE,         )

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Novelty = 1 - ln[ exp(ExpLIKE) + exp(ExpDISLIKE) ]
 

Figure 25: Computing Novelty from Experience of 
both LIKE and DISLIKE 

Implementing the Agents Using SaffronOne 
In what follows, we provide specific implementation details for the two different 

agents: myopic and active, using the SaffronOne platform. All the details 

necessary to run the same experiment as presented before are provided. 
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The Myopic Agent 

Figure 26 shows the myopic agent flow for each user. Vectors are denoted in 

bold font and “1” denotes LIKE while “0” denotes DISLIKE. Last, but certainly 

not least, we can build in all our agents the capability of dealing with LIKE-only 

results or LIKE and DISLIKE results, in order to be able to explore different 

active learning alternatives. 

Pick first 
product x at 

random

Get  rating r
for x from 
truth table

Learn 
through 

observe(x,r)

imagine() 
and select x

Loop while 
prods 

unselected

For all 
unselected 
products p

imagine(p,1)
imagine(p,0)

likeOnly?���� Ip = Ip,1
Else���� Ip = Ip,1 – Ip,0

Select x such that
Ix is MAX

Uses only getIndication() 
measure to select the product to 
recommend next

~ 12s

Pick first 
product x at 

random

Get  rating r
for x from 
truth table

Learn 
through 

observe(x,r)

imagine() 
and select x

Loop while 
prods 

unselected

For all 
unselected 
products p

imagine(p,1)
imagine(p,0)

likeOnly?���� Ip = Ip,1
Else���� Ip = Ip,1 – Ip,0

Select x such that
Ix is MAX

Uses only getIndication() 
measure to select the product to 
recommend next

~ 12s

 

Figure 26: Myopic agent logic flow 

The myopic agent is the simplest of them all. Products are “learned” by looking 

up in the rankings set to see if the recommended product was liked by this 

particular user or not. At recommendation time, we loop through all the as-yet-
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unselected products and use the imagine() calls to obtain indication values for 

LIKE and DISLIKE responses. We compute an overall indication value based 

on these metrics. After we have all the indication values for the candidate product 

set we sort on it and recommend the product with the highest indication. The 

loop continues until there are no more products in the candidate set at which 

time we move to the next user. 

The Active Agent 

The active learning agent uses the “switch” parameter to control how many 

iterations it spends “exploring” the space before it switches to recommending on 

indication (as the myopic agent does). While exploring, this agent uses the 

experience values from Saffron to put together a measure of “novelty” for each 

product, ultimately selecting the product with the highest novelty value. When 

recommending on similarity, the logic is identical to the myopic agent. Figure 27 

shows the active agent flow for each user.  
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Select x such that
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recommend next

shown 
>

switch ?

Np = 1-
ln[exp(Ep,1)+ 

exp(Ep,0)]

YES NO

shown counts the number of 
products that have already been 
recommended to the user. 
switch is a parameter to stop 
“exploring” and start using what 
we have learned recommending 
on indication (as in the myopic 
agent).

increment 
shown
count

likeOnly?���� Np = Ip,1
Else���� Np = Ip,1 – Ip,0
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shown counts the number of 
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we have learned recommending 
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agent).
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Else���� Np = Ip,1 – Ip,0

 

Figure 27: Active learning agent logic flow 

As before, a provision has been made in the agent’s logic to use LIKE only 

measurements, or LIKE and DISLIKE both. This provision is important for 

those cases where the response data is heavily biased towards one or the other 

(i.e. users dislike 80% of the products in the set). 

Technical details 
The experimental setup can consist of several machines that run each agent 

separately but in parallel, to conserve time. Each of these machines must have the 

following environment: 
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•  Windows 2000 operating system 

•  Java JDK 1.3.02 

•  SaffronOne V 2.01 

All of the agents are written in Java, using the SaffronOne libraries. No other 

non-JDK libraries need be used. Input parameters can be read from plain text 

files and results can be output into text files as well. 

Some of the SaffronOne calls used by the agents are not available to the public 

and thus it might be necessary to obtain a special “unlocked” version of the 

SaffronOne library to run these experiments. 



 

 58

C h a p t e r  9  

CONCLUSIONS 

The hypothesis of this work is centered on the need for recommendation engines 

to actively explore the space, at the expense of short-run success, to provide 

better overall recommendations. An overview of the field and the different 

recommendation engines opened this work, followed by a detailed description of 

our hypothesis and its associated metrics. In order to validate the hypothesis, an 

experiment was devised and executed. A detailed description of the data and 

experiment is provided. The results from the experiment and the associated 

analysis have been presented. Finally, detailed suggestions for future work in 

extending this work are given. 

Our experimental results appear to validate our hypothesis. As shown in Chapter 

7, active learning agents outperform myopic agents even in a short 

recommendation span of only 20 products, in spite of having to use some of 

those products up to explore the space.  Some of our key findings include: 

•  Small active learning thresholds seem to be sufficient to learn about the 

space. In most cases our L5 agent outperformed out L10 agent. We 

believe that this might be due to the length of the recommendation span 

(only 20 products, 10 out of which were used for “exploring” by the L10 

agent). However, the fact that L5 performs so well might be related to the 

number of real different preference clusters that might be available to the 

engine. This number might be, in all practical cases, small. Thus a well 

crafted engine that “touches once” each cluster and learns whether the 

user likes or not that “type of products” would be enough. If there are 
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less than 5 of these clusters then the other 5 exploratory 

recommendations of the L10 agent are essentially “wasted”.  

•  Larger exploratory phases are indeed superior than shorter ones for the 

more complex cases. In agreement with our previous finding, we 

observed that for some of the most complex datasets (the split 

personality ones), the L10 agent outperformed L5. This is rational as the 

split personality feature of these subjects might have increased the 

number of “liked clusters” thus requiring more exploratory 

recommendations to learn about them all. 

•  Similarity-only engines can get lost in a sub-optimal state looking for a 

preferred cluster. In a couple of occasions we observed the myopic agent 

actually going down in accuracy as the iterations grew. Our belief is that 

this is symptomatic of the case when the myopic agent by sheer luck 

started in a very unfavorable region of the preference space and thus 

takes a long time to “get to” the closest preferred cluster, where its 

performance goes up.  

Even though our results have been very encouraging, a reality check is in order. 

We used a very simplistic distance-based recommendation engine. Most 

commercial-grade engines should easily outperform this one and even include 

some of the ideas presented in this work. They do not, to the best of our 

knowledge, include the idea of orthogonality in the recommendation set however. 

In order to rubricate these results, the experiment should be re-run with a 

commercial engine, such as SaffronOne, as explained in Chapter 8. We expect the 

results of such a test to be less dramatic than the ones presented here, yet still 

significative. 
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