
The Value of Bad Recommendations – Injecting Orthogonality in
Product Recommendations and Learning Over Time

by
Luis Blando

BS, MS in Systems Engineering, Catholic University of Córdoba, 1992
MS in Computer Science, University of Nevada, 1994

MS in Computer Science, Northeastern University, 1998

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Business Management

at the

Massachusetts Institute of Technology
May 2001

The author hereby grants MIT permission to reproduce and distribute publicly paper and electronic copies of
this thesis document in whole or in part.

Signature of Author
System Design and Management Program

May, 2001

Certified by
Dan Ariely – Asst. Professor

Sloan School of Management
Thesis Supervisor

Accepted by

Paul A. Lagace
LFM/SDM Co-Director

Professor of Aeronautics & Astronautics and Engineering Systems

Accepted by
Stephen C. Graves

LFM/SDM Co-Director
Abraham Siegel Professor of Management

THE VALUE OF BAD RECOMMENDATIONS – INJECTING
ORTHOGONALITY IN PRODUCT RECOMMENDATIONS AND

LEARNING OVER TIME

by Luis Blando

Submitted to the System Design and Management Program in Partial Fulfillment of
the Requirements for the Degree of

Master of Science in Engineering and Management

ABSTRACT

Perhaps the most exciting aspect of electronic commerce is the potential ability to learn

the preferences of individual customers and make tailored recommendations to them.

When making such recommendations the recommendation system is facing a

fundamental dilemma. Should it provide the best recommendation based on its current

state of understanding of the customer or should it try to learn more about the customer

in order to provide higher potential payoffs in the future? This dilemma is at the heart

of the current work.

The dilemma facing a recommendation system is presented conceptually, and an

approach for ideal learning is proposed and tested. In order to test our hypothesis, we

modified one commercially available recommendation engine to consider measures of

novelty in an initial learning phase. We analyzed results from the normal and modified

engine for different datasets and characteristics of customers.

to my late mom, as promised

Table of Contents
Abstract...ii
List of figures...iii
Acknowledgments ..iv
Information Overload and Personalization..1

The Technology Behind Personalization...1
The many meanings of web Personalization..3

Customization ...3
Rule-Based Systems..5
Self-Learning Systems - Collaborative Filtering..9
Attribute-Based Models (a.k.a. Individual Models)..14
Which approach to take?...17

Simple Customization 18
Rule-Based Customization 19
Learning System 19

Focus of this work..20
Similarity and Novelty...21

Similarity Ratings ..21
Shortcomings – The “Myopic Agent” effect ..21

Injecting Orthogonality - a hypothesis ..26
A hypothesis ..26
Some obvious challenges ..27

Measuring Similarity and Novelty...30
A Simple Recommendation Engine..30

Linear distance between two profiles 30
Distance-Based similarity (The Myopic Agent) 32
Distance-Based Novelty (The Active Agent) 32

Experimental Setup...33
The design of the experiment ..33
The Dataset ...34

Generating the data: 34
The flow of the experiment..36
Measuring the results ...36

Results..38
Running the Experiment...38
All subjects...38
LE subjects ..39

LE clusters 40
SE subjects...42

SE clusters 42
HLE subjects...44

HLE clusters 44

 ii

HSE Subjects...46
HSE clusters 46

Next Steps: Using a Commercial Engine..48
The Recommendation Engine...48
SaffronOne ..49
Combining different responses into one metric...51
Implementing the Agents Using SaffronOne ...53

The Myopic Agent 54
The Active Agent 55

Technical details..56
Conclusions ..58
Bibliography..60

 iii

LIST OF FIGURES

Number Page

Figure 1: My Netscape - Customization example 5
Figure 3: Rule-based system 8
Figure 5: Canonical collaborative filtering 10
Figure 7: Amazon.com collaborative filtering-based recommendations 13
Figure 9: Understanding why in Amazon.com... 14
Figure 11: Attribute-based selection example 15
Figure 13: How to select personalization methods 18
Figure 14: Myopic agent effect 22
Figure 15: Biased product catalogs 24
Figure 16: Learning flow with both similarity and orthogonal approaches 27
Figure 18: Computing the similarity by profile distance 31
Figure 20: A hit matrix for one agent 37
Figure 22: Results - all subjects 39
Figure 24: Results - LE subjects 40
Figure 26: Results - LE clusters 41
Figure 28: Results - SE subjects 42
Figure 30: Results - SE clusters 43
Figure 32: Results - HLE subjects 44
Figure 34: Results - HLE clusters 45
Figure 36: Results - HSE subjects 46
Figure 38: Results - HSE clusters 47
Figure 40: Learning in SaffronOne through the observe() call 49
Figure 42: Rating different products in SaffronOne via imagine() call 50
Figure 44: Computing Indication from Credibility for LIKE and DISLIKE 52
Figure 46: Computing Novelty from Experience of both LIKE and DISLIKE 53
Figure 48: Myopic agent logic flow 54
Figure 50: Active learning agent logic flow 56

 iv

ACKNOWLEDGMENTS

The author wishes to thank the management of GTE Laboratories/Verizon,

particularly Tony Confrey, for their financial backing in this project; the people at

Saffron Technology, particularly Roger Barney, for their continued technical

support; Andre Turner for his help in running the experiments; and the several

current and former students that provided their rankings as experimental data.

The author wants to express his gratitude to his advisors, Dan Ariely and Manny

Aparicio, whose constant encouragement and sometimes-crazy ideas kept this

project moving. Working with them has been a pleasure, as well as a mental

roller-coaster.

Finally, and most importantly, I want to thank Laura, my best friend of many

years. Even though having endured this work-and-study neglect several times in

the past, she still stood strong and unconditionally supported me for one more

run.

C h a p t e r 1

INFORMATION OVERLOAD AND PERSONALIZATION

With the advent of the Internet, and the explosion of popularity of the world

wide web, new ways of interfacing with the customer are possible. Whereas

before the communication was usually one way and feedback from the user was

delayed or indirect (e.g. television or print advertisement) nowadays the Internet

allows for a much more interactive experience.

In addition, web sites have been growing at a tremendous pace in the past years.

Available information, therefore, has exploded and has quickly become

unmanageable for the average person. Personalization technology is an enabler to

attempt to cope with this information overload problem.

Not only are we now able to immediately receive feedback from the user by, for

example, measuring the time spent on our website; but also we can pro-actively

personalize what we present on the screen. This ability to target the individual as

opposed to a market segment is called “one-to-one web marketing”.

The underlying hypothesis under one-to-one web marketing is that users will

benefit more from the web experience, thus leading to greater attachment to the

website owner and possibly to increased receptiveness to up-sell and cross-sell

opportunities and thus in increased revenue.

The Technology Behind Personalization
There are a number of mechanisms to decide what to present to the user at each

of the pages in the website. These technologies span the range from deciding

 2

which pages to present next to the user, what colors to show the text in, to which

products or advertisements to present on the page based on the system’s

knowledge of the user. Generically speaking, this “tailoring” of a website to a user

is termed “personalization”.

As it will be presented in the next chapter, personalizing a website implies a

number of activities. Underlying most of these activities, however, lies the

question: “How do we select among X, Y, or Z given what we know about the

user?” One obvious example of this is Amazon.com, where users are

recommended products. However, the answer to the above question can (and

should) drive personalization in a much wider range, such as which banner ads to

present, what colors to use, and other non explicitly-requested items.

At the heart of non-trivial personalization there is thus the problem of “product

recommendation”, where product can range from actual products, to screen

configurations and other recommendations. This thesis work concerns itself with

the technology behind product recommendation, and suggests an alternative way

to improve its performance.

 3

C h a p t e r 2

THE MANY MEANINGS OF WEB PERSONALIZATION

The concept of personalizing content has become very popular nowadays.

However, there’s substantial confusion as to what personalization means. Some

web sites claim to have personalized content because they print the name or

nickname of the user when the user logs in. Some web sites “personalize” by

making recommendations based on the purchases of other users. Other web

sites actually recommend products based on the individual’s preferences.

Ironically, even the most popular “personalized” sites are not really tailored to

each individual, but rather to a market segment. This section will explore the

different approaches to personalization from a high-level perspective, and present

the pros and cons of each.

Customization
The first approach that we will consider is one we have termed “customization”.

Solutions employing this approach usually ask the user for specific information

(i.e. name, age, zip code, preferences in movies, etc) which is then used to tailor

the site’s content to the user.

These systems, although very useful, cannot really be considered intelligent, as

they do not attempt to infer what “else” the user might like, given what they

know the user already likes. In a nutshell, these systems do not “learn” from their

interactions with the user.

 4

This approach to personalization is a first-step and has become very popular. For

example, Figure 1 shows a snapshot of a customized page for my.netscape.com.

Note the circled sections and the information they contain. Since the user told

the system that he lives in Boston and has relatives in Argentina, the site lists the

weather in both Boston and a couple of user-selected cities in Argentina. In

addition, the user is also provided with movie listings and stock quotes that he

has requested.

It is important to realize that this type of personalization is “static”. In other

words, even though the actual content will change (i.e. updated weather, new

movie releases, and updated stock prices), the categories that are shown to the

user (city weather, stock quotes, movie reviews) remain fixed. That is, there is no

learning involved. The system will not present the user with content beyond the

specific content that the user pre-selected. For example, the system will not

present the user with:

• Information about a recent earthquake in Argentina of devastating

consequences. In this case, even though this information is clearly

relevant to the user, it does not fit the “weather-from-Argentina”

category.

• The release of the “Evita” soundtrack CD. In this case, even though the

user probably liked the movie, and it deals with Argentina, this CD is not

in the “movies” category and thus will not be shown.

This type of system is useful when the content can be separated into clear and

crisp categories that the user can configure. Configuration is performed when the

system presents content categories to the user (weather, movies, stocks) and the

user provides information that uniquely (and deterministically) identifies the

content to be presented. For instance, the user would enter 02144 for the ZIP

 5

code, the AMC-Boston movie theater for the movies section, and {VZ, PMIX}

for the stock quotes. Once this has been configured, the content will “refresh”

the elements, but will not change (add/remove) categories.

Figure 1: My Netscape - Customization example

Rule-Based Systems
Whenever personalization can be fully expressed as a function of known data in

the form of if-then rules, a rule-based approach is advisable. For a rule-based

system to be a viable solution, the “knowledge engineer” needs to have a

sufficiently complete understanding of the domain and all the possibilities that

may arise. It is the job of the “knowledge engineer” to document this

“knowledge” into the form of hard-coded rules.

It can be very difficult to use a rule-based solution for recommending products

because the domain can be very large with extensive possibilities. However, rule

based engines can be very effective for both narrowing a recommendation search

 6

and for fine-tuning a result set. For example, many shopping sites use rules,

similar to the rules below, to enhance the customer experience:

IF {PROD1,PROD2} in recommendation set
IF deliveryTime(PROD1) < deliveryTime(PROD2) THEN
RECOMMEND PROD1

ELSE
RECOMMEND PROD2

Rule based systems are not very adaptable (with the exception of the parameters

that the rules might be provided with). Rule-based systems are applicable when

we know the domain and are not interested in learning.

Many toolkits are available to create inference systems from rule-based

technology. Figure 2 shows a snapshot from the promotional materials of one

such toolkit. Note how the engine recommends a second on-sale item based on

the fact that the user has selected an on-sale item. Behind the scenes, the engine is

using a rule such as

IF SELECT-ONSALE THEN RECOMMEND ONSALE

One factor that should be of concern is that, as Figure 2 boasts, the engine would

recommend a second on-sale item even though the user has never actually

purchased an on-sale item (the user only browsed an on-sale item). What if the

user was an individual that really does not care for on-sale items, but simply

found an item of interest that just happened to be on sale? He would be shown

other on-sale items! This type of inflexibility is characteristic of rule-based

systems.

At the core of this problem is the fact that rule-based systems usually do not

allow us to really get at the reason why customers make the decisions they make.

 7

In a sense, rule-based systems are dependent on very few product attributes and

rules are built on top of those. These relatively few attributes might not be

enough to represent the user’s complex decision functions. Hence rule-based

system’s lack of predictive accuracy. For example, the “onsale” attribute used in

the rule above might not accurately represent the reason why the user decided to

buy the product in the first place. As a matter of fact, maybe the user bought the

product because of its color without paying any importance to whether the

product was on sale or not. However, since this rule only looks at one coarse-

level attribute (“onsale”), it will make the incorrect inference of showing the user

other on-sale items.

In essence, rule-based systems are useful for specifying universal truths or facts,

as they make little (or no) attempt at customizing their responses for a given user.

In addition, rule-based systems are inherently error-prone; the above “on-sale”

rule might recommend a lower-priced item than an item currently in a user’s

shopping cart!

Of course, one can always start adding rules to try to generate different outcomes

for different types of users. Those attempting this approach would quickly find

themselves with an unwieldy number of rules to maintain.

Rule-based systems are very good for universal facts that are to be enforced, or

applied, to the entire universe of possibilities. They can easily express filter

criteria or can be used for the initial “knowledge” in an inference engine when

there’s little collected behavior to draw upon.

 8

Figure 2: Rule-based system

One drawback of rule-based filtering is the well-established fact that consumers

do not always know what they like. Since the rules are written on the assumption

that the knowledge engineer knows what the users will like, they are inherently

error-prone. Rules can also be reverse-engineered from the study of past

interaction data, though this is useful for possibly fine-tuning certain rule

parameters and not necessarily for discovering new attributes previously

unknown.

Furthermore, since rule-based algorithms are usually at a loss when trying to

explain why they have reached a particular recommendation, a consumer will

always remain dependent on the agent to make “magical” recommendations for

him (and potentially perpetuate a bad recommendation pattern). This

shortcoming, generally speaking, is related to any method that uses self explicated

preferences (explicit statements of preferences such as “safety is the most

important attribute”).

 9

Self-Learning Systems - Collaborative Filtering
Collaborative filtering uses a community-based approach. In a nutshell,

collaborative filtering is about discovering what people “like yourself” have liked

before, and recommending those items. Instead of trying to determine the

intrinsic characteristics of the product that would be desirable for a particular

user, collaborative filtering tries to place the user into a “segment” and

recommends the products that, historically, were liked by other members of the

segment. This has been likened to computerizing the “word-of-mouth” effect.

Operationally, collaborative filtering predicts a person’s preferences as a linear,

weighted combination of other people’s preferences. The canonical collaborative

filtering approach is shown in Figure 3.

 10

P1,P2,??

P2,P4,P9

P1,P3,P7

P1,P2,P3

P1,P4,P6

P1
P2
??

P1
P2
P3

Strongest match

Recommend P3

The user

The Universe

products bought

Figure 3: Canonical collaborative filtering

“The user”, let’s call him Bill, has purchased products P1 and P2 and wants the

inference engine to recommend other products. The collaborative filtering

engine tries to match the user with one of the entries in its universe of users.

After exhaustively checking prior purchases of other available users, the engine

determines that the blue user is the one that most closely resembles Bill. Since the

blue user has also purchased P3, it recommends this product to Bill. Note that

although we used “products-purchased” as the specific characteristic to classify

users in this example, other characteristics, such as demographic profiles, can and

have been used.

 11

One of the problems of canonical collaborative filtering is that as the universe of

users becomes large, the computational time required to allocate a user to a

similar kind grows. In a nutshell, it doesn’t scale.

To alleviate this performance problem, collaborative filtering toolkit vendors have

taken the approach of creating like-minded segments in order to reduce the

universe space. Therefore, when a new user is requesting a recommendation he

or she is allocated to a “segment” and provided with the recommendations for

that segment.

There’s a range of approaches used by collaborative filtering solutions that differ

in how the user is “allocated” to a segment. These different implementations

have implications on two fronts:

(1) Efficiency – some methods aim at comparing every user with every

other user to determine proximity (i.e. nearest neighbor approaches).

Since this approach is very intensive, optimization approaches have

been attempted. These optimizations create clusters of users and

then allocate a target user based on key statistics for the cluster. The

goal is to reduce the order of magnitude of comparisons from O(N)

to O(C) where N is the number of users, C is the number of clusters,

and C<<<N.

(2) Accuracy – by segmenting users in clusters, the intra-cluster variance

affects the performance of the results. For borderline target users,

(those that barely make it into a cluster), the potential error in

assigning the cluster’s recommendations to the target user might be

nontrivial.

 12

This “segmented” approach has its drawbacks. First, and foremost, a user might

be on the “boundaries” of a segment and therefore anything we recommend will

not be exact. Second, since we are generating segments using an averaging

process, individual user information is being lost. Third, the segmentation

optimization for the collaborative filtering approach is implicitly built on the

assumption that the population is pseudo homogenous and that such segments

can be reasonably defined. If the population is very heterogeneous, and crisp

segments cannot be identified, the within-segment error in recommendations will

be large. Finally, another concern with the segmentation approaches is that it

usually works best when the subjects are relatively static over time. For users that

change their preference patterns frequently, re-segmentation is necessary, which

increases the resources required for the system.

Another drawback of collaborative filtering (in all of its forms) is that it is not

completely self-sufficient. Since it relies on historical data to make

recommendations, how can it ever recommend a brand-new item? Artificial

mechanisms need to be employed so that systems built around collaborative

filtering can be jump-started with new items. This exercise, however, is error-

prone.

A very popular site that uses collaborative filtering for its recommendations is

Amazon.com.

As shown in Figure 4, upon entering the site and selecting the recommendations

option the user is presented with a set of recommended items for purchase. In

the particular example of Figure 4, a book about fly-fishing in Vermont is

recommended.

 13

Figure 4: Amazon.com collaborative filtering-based

recommendations

Note the prominent Get Better Recommendations message, with the “rate the

selections” link in the bottom left corner of Figure 4. Rating past purchases or

recommended items is a method of obtaining feedback from the customer about

past recommendations. By rating the selection, the user may move himself out of

his current target segment and into a new one, with potentially different

recommendations.

Note that Figure 4 does not tell us why the Vermont fly-fishing book has been

recommended. However, with a little bit of work we can find out a possible

reason. Figure 5 shows the complete entry for the recommended book.

Circled in red is a book the user had bought in the past. Note that there’s a list of

books that “similar customers” bought in conjunction with the recommended

book. This is why Amazon is recommending the Vermont book. However,

 14

notice that in doing so the engine has neglected the fact that this particular user

lives in Massachusetts, does not own any other book about Vermont, and likes

some variety in the topics he reads.

Figure 5: Understanding why in Amazon.com...

Attribute-Based Models (a.k.a. Individual Models)
An alternative to the collaborative filtering approach is to construct attribute-

based inferences. In these models, both products and consumers are given

different attributes that are meant to represent the inherent qualities of the

products (or preferences). Products are selected based on the user’s specific

preferences.

 15

Figure 6 shows how selection (inference) works. Given a universe of attributes,

which are commonly defined and shared in the system, each user has what we call

an “attribute signature”, which is basically her particular preference for each

attribute. In the example, this particular user has a loading of 0.3, 0.6, and 0.2 for

attributes one, two, and three, respectively. There are only three attributes in this

system.

Figure 6: Attribute-based selection example

Attributes one,
two, and three in
the user’s model.

Product
recommendation
algorithms

The product catalog.
Each product rated on
the three attributes.

 16

Each product is also rated along these different attribute “dimensions”. Selecting

that product whose attribute signature is “closest” to the user’s attribute signature

is the job of the recommendation engine. Note that the center product (in red)

has an attribute signature that is almost identical to the user’s.

Our example is an admittedly simplified scenario, as there can be many more than

three attributes and it’s not necessary that all products be rated on all attributes or

that an user have a signature1 that contains all attributes. Still, it is representative

of the general idea.

In essence, individual-based models delve deeper in the “constituents” of a

product and are more concerned with the “reason” why a user likes or dislikes a

particular product. This makes individual-based models more flexible and,

usually, more accurate than other prediction mechanisms. In addition, individual-

based models can immediately recommend newly added products, as long as

these products have been appropriately “attributed”. This means that they do not

suffer from the “cold start” problem that plagues collaborative filtering solutions.

Both collaborative-filtering and individual-based approaches need information

about the individual user. In the case of collaborative-filtering, the information

needed takes the form of a series of population ratings on existing products. In

the case of individual-based approaches, the information takes the form of a set

of attribute weights. For collaborative-filtering, however, it is also necessary to

know (and consider) the information for the rest of the users. Pure individual-

based models need not consider this. Of course, hybrid mechanisms are usually

the most powerful as they can tailor products on an individual basis and generate

leads on a community basis.

1 A collection of ratings on each of the attributes known to the system is called a “signature”.

 17

An important factor to consider is that new products and changing user

preferences are relatively simple problems for individual-based models but

complex for collaborative-filtering approaches.

To date, individual-model solutions have been less common than collaborative

filtering approaches, possibly due to the fact that coming up with the right

attributes and diligently tagging content is an arduous and expensive task.

Selecting the right attributes to use to correctly categorize a product catalog is a

difficult undertaking, which runs the risk of misspecification. For example, a

product catalog for computers might never add “case color” as one of the

attributes, for traditionally computers have been only about power, speed, and

capacity. Yet, as the artistic design of the newer models of personal computers

have proven, the exterior’s color is important for a segment of the PC-buying

population (which now includes people that might have not cared for a computer

in the past).

In addition, individual-model solutions are harder, computationally, and more

difficult to represent because the matrix of attributes can become very large and

thus can be difficult to maintain and process. This computational complexity has

prevented truly individual-based approaches from reaching the mainstream. It is

only recently that advances have been made to optimize these computations and

make these approaches more feasible.

Which approach to take?
Given the different possibilities for performing customization, a sensible question

to ask is which approach is applicable for which situation. This section will

explore this issue.

 18

We need to consider the following parameters when selecting a personalization

approach:

• The size of the decision space, i.e. the number of decisions that need to

be made; and

• The expert’s knowledge of the decision domain.

• The characteristics of the user population

m
an

y

little

individual
based

great

collaborative
filtering

fe
w collaborative

filtering customization

m
an

y

little

individual
based

great

rule
based

fe
w collaborative

filtering customization

Knowledge of Domain

N
um

be
r o

f
De

ci
si

on
s

homogeneous heterogeneous
Population characteristics

Figure 7: How to select personalization methods

Figure 7 shows which customization to apply depending on these three factors2.

Simple Customization

Simple customization is appropriate when the decision space is small and we have

a great deal of knowledge about the domain. .

2 Note that this heuristic is approximate.

 19

Rule-Based Customization

Rule-based customization is appropriate when the decision space is large and we

have a great deal of knowledge about the domain. If we are extremely proficient

in the domain of personalization, we can completely specify all the possible

patterns in personalization that might appear and can define the exact rules that

will yield the best possible content for the user based on past experience.

This approach is usually used by “Expert Systems”. These systems, popular in

years past, usually have a large mass of highly developed rules regarding a

particular domain. These rules usually take years to build by a team of true world

experts on the subject. It is important to note that the domains for which these

systems are built usually have no (or few) surprises and therefore most of the

answers can be predicted given a set of preconditions. Expert systems in the area

of medical diagnosis, petroleum exploration, and computer system configuration

have all been built with reasonable success.

The domain of one-to-one web marketing personalization efforts, however, is far

from being known. Trying to estimate the tastes and desires of users is an

incredible difficult task, and one where there are hardly any universally valid rules

(or for that matter, completely deterministic rules).

Learning System

Learning systems are appropriate when the decision space is large and we have

little knowledge about the domain.

The two learning systems that we consider are collaborative filtering and

individual-based systems. To decide which type of learning system is best, we

need to evaluate the target users and the content universe.

 20

Individual-based models embrace the difference in people and make no (or little)

assumptions about the similarity between users. They recognize the inherent

characteristics of content (i.e. which attributes it contains and which ones it

doesn’t) and of users (which attributes they like and which ones they don’t).

Using this information they provide the best product for each user by computing

the distances between the content’s characteristics and the user’s preferences.

People, and children in particular, have changing and varying tastes. This means

that each user’s preference profile will change frequently. In such a setting,

collaborative-based filtering has been shown to consistently under-perform

individual-based models.

While people have changing preferences, they can also behave in herd-manner.

Trends become in-vogue, styles become fashionable, and the latest action figure

is all you see on television (and all you want to see on television!). In this case,

many users are “joined” in their likes/dislikes and thus the collaborative filtering

approach can shine.

Focus of this work
Within the different alternatives for personalization, individual-based models are

the most promising and potentially most accurate. This work will focus on the

recommendation engine component of these methods.

 21

C h a p t e r 3

SIMILARITY AND NOVELTY

As explained before, this work will concentrate on the recommendation engine

part of personalization systems. This chapter will describe the general idea behind

individual-based model recommendation systems and its shortcomings.

Similarity Ratings
Given a set of products, each of them rated on a collection of attributes, plus a

profile of attribute-ratings preferences for a user, the problem of

recommendation can be reduced to finding a subset of products that best match

the user’s preference profile. In essence, the problem is reduced to searching the

product space for all those products that are “similar” to the ideal product.

For example, the user’s ideal product in Figure 6 has ratings of 0.3 for the green

attribute, 0.6 for yellow, and 0.2 for pink. Subsequently, out of the universe of

three products, the recommendation engine finds the one that is most similar to

this ideal product. Measuring this similarity can be done via a number of

mathematical measures, and recommendation can follow from these

measurements. For example, recommend the product whose geometric distance

to the ideal product is shortest.

Shortcomings – The “Myopic Agent” effect
Using similarity alone for recommendation agents has some drawbacks. Let’s take

the case of a brand-new user. In this case, the agent knows absolutely nothing

 22

about this user. It is therefore hard-pressed to make any valuable

recommendations, and it has roughly a 50/50 chance of recommending a

product that makes sense. If the user didn’t like the product, a somewhat

different product will be presented until the user likes the selection. Once a

successful selection has taken place, however, the “similarity policy” will

dominate and the agent will tend to recommend products that are similar to the

one that it knows the user likes.

ATTR-1
($)

ATTR-2
(Uniqueness)

1 2

3 4Start

undesirable

desirable

Iso-preferences curves

Very uniqueVery common

Very
expensive

Very
inexpensive

5
6

7

Figure 8: Myopic agent effect

Figure 8 shows a diagram to illustrate this problem. It shows an admittedly

oversimplified product universe space that has been rated on only two attributes

(cost and uniqueness). Each product in the catalog from which the agent chooses

can be placed in this plane. Furthermore, there are groups of products that share

the same characteristics. Let’s imagine for a moment that the products are rare

coins and that our user is a coin collector. We can draw the product space and

 23

define the iso-preferences3 curves for this particular coin collector. In this case,

this collector does not care for middle-of-the-road coins, but rather prefers either

very unique (even if expensive) or very common (only if inexpensive) coins. After

drawing the isopreferences curves, as shown in Figure 8, we see that there exists a

“band” of undesirable space in between two bands of desirable products.

If we were using a similarity-based agent to recommend products from this

catalog to this collector, we might experience what we have called the “myopic

agent effect”. The first product recommended happened to lay, out of random

luck, in one of the undesirable groups (1). The agent then attempts to “get away”

from those products and lands on yet another undesirable group (2). This

sequence continues until finally the agent finds a product that the user actually

likes (5). At that moment, however, that agent is prone to continue to

recommend products from that group (iso-preference curve) until it exhausts all

of them, at which time it will be search time again.

Unfortunately, during all this time the agent failed to recognize that there might

be other areas of the feature space (such as the one shown with a red arrow in

Figure 8) that the user might also enjoy.

The problem evidenced before is commonplace with locally optimum approaches

such as the one shown. Product recommendation engines that narrow mindedly

zero-in on the feature space region where some products have been liked and

ignore the rest of the space are bound to suffer from this problem. If the user

does not have any knowledge about the product universe and relies solely on the

agent’s advise, this approach also results in no learning on the agent’s part, as the

user cannot really “correct” any of the agent’s recommendation.

3 Any product on the curve is “as desired” as any other product on the curve.

 24

Furthermore, the above discussion has always implicitly assumed that both the

marketplace and the user’s preferences remain static over time. This is hardly the

case in today’s Internet economy. Products are introduced constantly and they

immediately enlarge the product universe that product recommendation engines

need to consider. In addition, user’s preferences do indeed change and that poses

a new set of problems to the engine as new areas of the feature space might now

become desirable.

ATTR-1

ATTR-2

Start

Hits regarding Java,
the programming
language

Hits regarding Java,
as in coffee

Hits regarding Java,
the island

1
2

3

2’

3’

99999

Figure 9: Biased product catalogs

There’s yet another situation where similarity-only agents fail to deliver the right

set of results to end-users. Consider the situation depicted in Figure 9. In this

case, the product “catalog” is disproportionably large for one type of products

and very small on other, equally “desirable” products. A typical example of this

phenomenon can be found everyday in web-page searches. For instance, a search

for the keyword “java” might return a large number of hits for the programming

language interpretation of the word, and none (or few) about the beverage or the

island interpretation.

 25

Furthermore, if a user happens to “like” a product in the programming language

category, further requests for recommendations will undoubtedly revolve within

the same homogeneous category. When product catalogs are even and well

segmented (i.e. a few products well discriminated by the selected attributes) this

problem is important, but not critical, as the user would exhaust one (small)

group and only then move to a different desirable group (possibly increasing his

satisfaction level with the change). However, when product catalogs are very

biased (i.e. a large number of products of one type and a small number of

products of different-but-related categories) this problem can be acute, since

exhausting the large product group is impractical and the user would in fact never

be recommended products from other categories but the one the agent is “sure”

the user likes.

 This is exemplified in Figure 9, where the agent starts in the “programming

language” group and continues to make its recommendations 2, 3, …, 99999

from that same group. Notice that these recommendations will most likely

contain redundant information, and this agent will not be able to detect that.

Contrast this return set with the case where the agent actively seeks products

from different segments, as depicted by the sequence (1), (2’), and (3’). In this

case, the user will be presented with a variety of products from distinct product

regions, and the agent will in fact learn which region it needs to concentrate its

next search on.

 26

C h a p t e r 4

INJECTING ORTHOGONALITY - A HYPOTHESIS

A different approach to recommendation engines is presented, rooted on the

concept of exploring the feature space while learning about the user to detect

areas of interest and avoid the problems described in previous chapters.

A hypothesis
Consider for a second what would happen if we were able to device a

recommendation agent that would “explore” the entire feature space before

committing to any given groups of products. In our example, for instance, this

agent would be able to identify the two desirable areas and thus recommend

products from both.

We contend that such an approach would, over the long run, outperform a

typical similarity-based agent. We have called this special agent an “active learning

agent”. Such an agent would initially pro-actively explore the feature space by

recommending products that are different from products it knows the user likes.

In such an environment, the agent would learn about the entire space and later

revert to similarity-based recommendations, once the entire product space has

been “sampled”.

Figure 10 shows a high-level representation of the logic behind the agent’s

learning process. In essence, when a new user enters the system, the agent will

know very little about the environment and thus will on purpose recommend

 27

dissimilar products to the ones it has detected the user likes. Once the agent

determines that it knows enough about the user’s preferences and the product

space, a standard similarity approach can be used.

Record user’s
response to previously
recommended product

Do I know
enough
about
user?

Recommend using
orthogonal approach

Recommend using
similarity approach

Figure 10: Learning flow with both similarity and
orthogonal approaches

We contend that once we get to use the similarity approach, we have learned

more about the feature space in relation to the user’s preferences and therefore

the agent would be able to make better recommendations.

Some obvious challenges
The approach presented above has a couple of obvious challenges. The first

problem has to do when deciding when to switch from “exploring the space” to

“using it”. In other words, when do we make the change from recommending

dissimilar products to simply using the information that we collect to recommend

products that follow that profile?

 28

This work will not attempt to address this issue, except to state that generic

statistical metrics can be used to estimate the “confidence” of the agent about the

entire product space and use that as well as an appropriately tuned threshold to

automatically switch from orthogonality to similarity. We believe that determining

how to optimally switch from one mode to another would only make sense once

the goodness of the approach is proven, not before. This work attempts to prove

the general approach leaves this detail of selecting the appropriate threshold for

further research.

In addition, instead of selecting this threshold as a hard and fast rule systems can

be designed to provide a continuous function that will measure both the degree

of similarity as well as the expected learning from any given product to be

recommended. Then, the agent could make complex decisions like deciding to

recommend a product that is “only 10% less good than the best one” but will

“yield 40% more expected learning than the best one”. Furthermore, for agents

that can recommend multiple products at a time, a mixed approach can be used

which yields the best solution to this dilemma. Namely, some of the

recommended products can follow the “similarity” approach while the others can

follow the active-learning approach.

On account of the long-term nature of the benefits of this approach, it should be

obvious that for short-lived interactions (i.e. less than 5-10 recommendation

feedback pairs) are not suitable for this approach. The rationale is simple: if you

only have a couple of chances of recommending something to a user, try to do

your best as soon as possible, as you won’t have time to explore the space and

then recommend.

Last, but certainly not least, we need to define what “orthogonal” means. So far

we have described this new approach recommendations as “dissimilar”,

 29

“different”, or “orthogonal”. We have yet to explain how exactly we compute this

orthogonality factor for a product. This issue concerns us next.

 30

C h a p t e r 5

MEASURING SIMILARITY AND NOVELTY

This chapter describes the computation of our version of orthogonality based on

the measures that traditional recommendation engines provide.

A Simple Recommendation Engine
In order to be able to prove or disprove our hypothesis with the fewer number of

unknown variables, we decided to build a very simple, straightforward

recommendation engine. Commercial-grade recommendation engine products

are substantially more sophisticated. Suggestions for future work with one such

product are given in a later chapter.

Linear distance between two profiles

Our recommendation engine works on products that the user has liked. For such

products, the engine examines the attributes of the products and adjusts the

user’s “histogram” of values for each attribute, as shown in Figure 6. Figure 11

shows the details of the distance calculation for a given user profile and a

particular hypothetical product, on a four-attribute space.

Notice that we are not interested in the relative positions of the user’s preferences

in the attribute scale, but rather in the absolute difference. Thus, it is assumed

that the model under which the user operates is an “ideal point model” where the

preferences along an attribute are not monotonic but rather with a sigle peak

(more sugar in my coffee is better up to some point at which it becomes worse).

 31

In addition, a simplifying assumption is that deviations from the ideal point in

either direction are equally unappealing. Because of the non-monotonicity

assumption, this simple engine would not work well in an environment in which

preferences are monotonically increasing (when higher levels are always better).

In such an environment, this engine will not be able to favor a product whose

attributes are higher than the user’s (assuming higher is strictly better), yet at

distance identical to that of another product, whose attributes are all lower than

the user. In the example of Figure 11, the product shown, {0.5, 0.2, 0.0, 0.7} with

a distance of 1.3, would be identical to a product {0.9, 0.2, 0.0, 0.7} also with a

distance of 1.3. If the values of attribute a1 imply higher-is-better, this engine

cannot recognize that.

1.0

0.6

0.2

0.5

0.2

0.5

0.0

0.7

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

0.6 - 0.5 = 0.1

1.0 – 0.2 = 0.8

0.2 – 0.0 = 0.2

0.7 – 0.5 = 0.2

1.3
User’s
profile

Product
profile

Figure 11: Computing the similarity by profile
distance

 32

Distance-Based similarity (The Myopic Agent)

At any given time, the user has a certain profile (or desirability) for each particular

attribute. Each product contains a specific value for each attribute. Thus, in order

to compute the “similarity” or “desirability” for this particular product and user

combination, we simply compute the distance between the product’s attribute

profile and the user’s attribute profile.

Once we obtain the desirability for each product, this engine simply selects the

product with the highest desirability (that is, the one with the shortest distance, or

closest to the user’s profile). We have termed this behavior the “myopic” agent.

Distance-Based Novelty (The Active Agent)

Computing novelty in this simple engine is straightforward. The same identical

computation takes place, yet at the time of recommending a product we select the

one with the least desirability (that is, the one that is farthest from the user’s

profile). Note that a further improvement can be achieved if the engine would

take into account not only the desirability but also its confidence / knowledge

about the attributes in questions.

However, in order to form a recommendation engine we need to understand how

to switch from exploring the space (i.e. recommending on novelty as explained

above) and recommending on similarity using the information collected in the

exploratory phase. We introduced this “switching” value as a parameter and ran

our experiment with different values. This agent would therefore recommend the

first N products based on novelty, and the rest of the products based on

similarity. We have named this agent the “active” agent, or the “learning” agent.

 33

C h a p t e r 6

EXPERIMENTAL SETUP

This chapter describes our experimental setup, and presents the metrics that

we will use to measure the results.

The design of the experiment
The purpose of the experiment was to validate or refute our active learning

hypothesis. We therefore created two recommendation agents: the myopic agent,

using only similarity as its guide; and the active agent, which first explores the

space as described before. Comparing these two would allow us to validate/refute

the hypothesis.

To recap, we defined and coded the following agents:

• Myopic agent: this agent uses the standard similarity-based mechanism, as

explained in the previous chapter.

• Active agent: embodies our hypothesis, and is calculated as explained in

the previous chapter.

In order to test the performance of these engines, we assembled different datasets

representing products along with their attributes, as well as users and their ratings

for each product. To keep the experiment manageable, we only allowed two

possible responses, LIKE and DISLIKE.

 34

The overall flow of the experiment would be, therefore, to loop user by user,

recommending products in the order mandated by the agent, until all products

had been recommended and all users had been exhausted. We can then measure

the hit profile, namely whether an agent recommended a liked or disliked product

at each iteration. In the following sections we will describe all these elements in

detail.

The Dataset
A separate program to exhibit clustering as required by this work generated the

dataset. The purpose of this thesis was not to prove/disprove the existence of

such clustering in real-people responses and therefore we fixed that variable by

generating a dataset that contained six different population classes each with six

clusters in them. The dataset also contained 512 products.

Products are defined by 9 binary attributes (i.e., Xi =0,1 for I=1,…,9). There

are, therefore, 29=512 possible products. Customers are defined by a vector of

betas. Betas are bounded by [-1,1]. “Hybrid customers” are those that can behave

according to two different personalities. These customers have two sets of betas

and their utility for a given product is the maximum utility from the two sets.

The utilities are defined by the inner product of the beta vector and the product

vector. We introduced error terms. The customer will purchase a product if its

utility for the product plus an error term is greater than zero. Error terms are

normally distributed with mean zero.

Generating the data:

The nine attributes are divided in three sets:

A = [1,2,3]

B = [4,5,6]

 35

C = [7,8,9]

We then defined six different clusters of customers, each with its own preference

for the attribute sets mentioned before, as follows:

Cluster N: preferred set > intermediary set > low set
Cluster 1: A > B > C

Cluster 2: A > C > B

Cluster 3: B > A > C

Cluster 4: B > C > A

Cluster 5: C > A > B

Cluster 6: C > B > A

In each cluster, the Betas for the preferred set are drawn from an uniform

distribution, U[1/3, 1], Betas for the intermediary set are drawn from U[-1/3,1/3]

and Betas for the low set are drawn from [-1,-1/3].

Hybrid customers have two utility functions, and their actual utility is the

maximum of the two functions. The six clusters used in this experiment are the

following:

Hybrid Cluster1 = Cluster 1 and Cluster 4

Hybrid Cluster2 = Cluster 2 and Cluster 6

Hybrid Cluster3 = Cluster 3 and Cluster 6

Hybrid Cluster4 = Cluster 4 and Cluster 5

Hybrid Cluster5 = Cluster 5 and Cluster 1

Hybrid Cluster6 = Cluster 6 and Cluster 1

There are twenty customers in each of the six clusters defined above. A

randomly distributed error with mean zero and variance 0.4 was added to each of

 36

the utilities before making the choice. Choice was = 1 if the net utility (real utility

+ noise) was greater than zero. The data with this error term was named “Small

Error”, or SE subjects.

We also injected a randomly distributed error with mean zero and variance 1.4 to

each of the utilities before making the choice. Choice was = 1 if the net utility

(real utility + noise) was greater than zero. The data with this error term was

named “Large Error”, or LE subjects.

Similarly, we introduced small and large errors for the hybrid subjects thus

resulting in two more datasets, the Hybrid Small Error (HSE) and the Hybrid

Large Error (HLE) subjects.

In summary, the entire product dataset consisted of 512 products, each with 9

attributes. The subject (rankings) data consisted of four different subject types:

SE, LE, HSE, and HLE. Each subject type had six clusters and each cluster

twenty subjects. In total, we have 480 subjects (4 x 6 x 20).

The flow of the experiment
Given an agent type, the experiment consisted in sequentially process each user in

the rankings set. After the first product is selected at random, the rest of the

products are presented in the order recommended by the agent, for each user. We

present 20 products in total to each user. That is, we do not exhaust all the

products (512 recommendations).

Measuring the results
After each user is completed, a hit profile is calculated for this user/agent

combination. A hit profile is simply one row of the complete hit matrix for this

agent, as shown in Figure 12.

 37

……………

1…00User N

0…11User 2

1…10User 1

Iter. 161…Iteration 2Iteration 1

……………

1…00User N

0…11User 2

1…10User 1

Iter. 161…Iteration 2Iteration 1

User 1 disliked our first recommendation, liked the second one,…, and liked the last one.
User 2 liked our first and second recommendations,…, and disliked the last one
User N disliked our first and second recommendations,…, and liked the last one

Figure 12: A hit matrix for one agent

When we are interested in evaluating the results for different types of users, we

compute the hit matrix for each user cluster. Given a user cluster, we average all

the columns (one per iteration) and we obtain a single vector, the results vector,

which represents how well this agent did on this particular “type of user”. The

value of each element of this ordered vector represent how well the agent did in

this particular iteration. Notice that this value is in the range [0…1].

Once we have results vectors for each of the agents/user types combinations, we

can compare the results of each agent for a given user type by plotting them on a

graph. Generally speaking, we expect the myopic agent to have better

performance in the first recommendations but overall to under perform the

active agent. We expect the active agent, on the other hand, to start slower than

the myopic one, as it is exploring the space, but jump directly from cluster to

cluster as required thus providing a better overall performance.

 38

C h a p t e r 7

RESULTS

This chapter presents the results of the experiment. Graphically, results are

included for all subject types and clusters.

Running the Experiment
All the data was ran through a myopic agent (a.k.a “learning 0”, or “L0”), an

active learning agent with a switching parameter of 5 (a.k.a. “learning 5” or “L5”),

and an active learning agent with a switching parameter of 10 (a.k.a. “learning 10”

or “L10”).

Hit matrices were computed for all the 480 subjects lumped together, for each

four subject types separately, and for each six clusters independently within each

subject type. Results for L0, L5, and L10 were displayed graphically, and in order

to better compare, a logarithmic trend line was created for each.

All subjects
The comparison for all 480 subjects is shown in Figure 13. As expected, we see

the L0 agent outperforming the active agents in the beginning, but both L5 and

L10 eventually trend towards a higher accuracy value. It is interesting to note that

in this graph, as in many others that follow, the L5 agent outperforms L10. We

believe this phenomenon might be due to the fact that since we are only

recommending a total of 20 products, the L10 agent spends half of these

recommendations “learning” (that is, purposely recommending dissimilar

products). The remaining 10 recommendations are not enough to “lift” the trend

 39

high enough (to outperform L5). We will see, however, that there are cases where

the extra learning still does prove better even in this short-run case. We believe

that had we ran the recommendation experiments longer the L10 would in all

cases outperform L5.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to
similarity for L5

switch to
similarity for L10 ALL

Figure 13: Results - all subjects

LE subjects
Figure 14 shows the results for all large error subjects. Notice the large swings in

the raw data and the pronounced increase in accuracy when the learning agents

change from “exploring” to “recommending”, at iterations 5 and 10, respectively.

 40

0.40

0.45

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to
similarity for L5

switch to
similarity for L10 LE

Figure 14: Results - LE subjects

LE clusters

Figure 15 shows the results for the six large error clusters. Notice how for cluster

LE1 the myopic agent actually outperforms the others. This is the only case

where the active agents are not the most accurate. In the case of LE1, it is

possible that the first product selected (at random) falls exactly in the cluster

where those subjects have a preference, and thus the myopic agent concentrates

in recommending similar products, gaining high accuracy marks.

 41

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE1
L5-LE1
L10-LE1
Log. (L0-LE1)
Log. (L5-LE1)
Log. (L10-LE1)

switch to
similarity for L5

switch to
similarity for L10 LE1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE2
L5-LE2
L10-LE2
Log. (L0-LE2)
Log. (L5-LE2)
Log. (L10-LE2)

switch to
similarity for L5

switch to
similarity for L10 LE2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE3
L5-LE3
L10-LE3
Log. (L0-LE3)
Log. (L5-LE3)
Log. (L10-LE3)

switch to
similarity for L5

switch to
similarity for L10 LE3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE4
L5-LE4
L10-LE4
Log. (L0-LE4)
Log. (L5-LE4)
Log. (L10-LE4)

switch to
similarity for L5

switch to
similarity for L10 LE4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE5
L5-LE5
L10-LE5
Log. (L0-LE5)
Log. (L5-LE5)
Log. (L10-LE5)

switch to
similarity for L5

switch to
similarity for L10 LE5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-LE6
L5-LE6
L10-LE6
Log. (L0-LE6)
Log. (L5-LE6)
Log. (L10-LE6)

switch to
similarity for L5

switch to
similarity for L10 LE6

Figure 15: Results - LE clusters

 42

SE subjects
As expected, the small error subjects, shown in Figure 16, display much smaller

swings in the raw data. It is very apparent in the graph where the learning agents

make the switch to recommending on the learned information.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to
similarity for L5

switch to
similarity for L10 SE

Figure 16: Results - SE subjects

SE clusters

Figure 17 shows the six graphs for the SE cluster subjects. The SE3 graph shows

a case where the myopic agent probably landed in a part of the product space

sufficiently different from the preferred sections and thus it took some time to

“find” the right products to recommend. This behavior is one of the

characteristic drawbacks of similarity-only recommendation engines.

 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE1
L5-SE1
L10-SE1
Log. (L0-SE1)
Log. (L5-SE1)
Log. (L10-SE1)

switch to
similarity for L5

switch to
similarity for L10 SE1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE2
L5-SE2
L10-SE2
Log. (L0-SE2)
Log. (L5-SE2)
Log. (L10-SE2)

switch to
similarity for L5

switch to
similarity for L10 SE2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE3
L5-SE3
L10-SE3
Log. (L0-SE3)
Log. (L5-SE3)
Log. (L10-SE3)

switch to
similarity for L5

switch to
similarity for L10 SE3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE4
L5-SE4
L10-SE4
Log. (L0-SE4)
Log. (L5-SE4)
Log. (L10-SE4)

switch to
similarity for L5

switch to
similarity for L10 SE4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE5
L5-SE5
L10-SE5
Log. (L0-SE5)
Log. (L5-SE5)
Log. (L10-SE5)

switch to
similarity for L5

switch to
similarity for L10 SE5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-SE6
L5-SE6
L10-SE6
Log. (L0-SE6)
Log. (L5-SE6)
Log. (L10-SE6)

switch to
similarity for L5

switch to
similarity for L10 SE6

Figure 17: Results - SE clusters

 44

HLE subjects
The hybrid large error data is probably the most complex of all the sets, as the

subjects has large errors plus the “split personality”. In this case we can see the

value of larger learning phase, as L10 edges out L5 as shown in Figure 18.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to
similarity for L5

switch to
similarity for L10

HLE

Figure 18: Results - HLE subjects

HLE clusters

The results for each of the HLE clusters are shown in Figure 19. In several

occasions we find the L10 is valuable and the best predictor. HLE2 and HLE4,

specifically, show the difference between L10 and the rest.

 45

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE1
L5-HLE1
L10-HLE1
Log. (L0-HLE1)
Log. (L5-HLE1)
Log. (L10-HLE1)

switch to
similarity for L5

switch to
similarity for L10

HLE1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE2
L5-HLE2
L10-HLE2
Log. (L0-HLE2)
Log. (L5-HLE2)
Log. (L10-HLE2)

switch to
similarity for L5

switch to
similarity for L10

HLE2

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE3
L5-HLE3
L10-HLE3
Log. (L0-HLE3)
Log. (L5-HLE3)
Log. (L10-HLE3)

switch to
similarity for L5

switch to
similarity for L10

HLE3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE4
L5-HLE4
L10-HLE4
Log. (L0-HLE4)
Log. (L5-HLE4)
Log. (L10-HLE4)

switch to
similarity for L5

switch to
similarity for L10

HLE4

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE5
L5-HLE5
L10-HLE5
Log. (L0-HLE5)
Log. (L5-HLE5)
Log. (L10-HLE5)

switch to
similarity for L5

switch to
similarity for L10

HLE5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HLE6
L5-HLE6
L10-HLE6
Log. (L0-HLE6)
Log. (L5-HLE6)
Log. (L10-HLE6)

switch to
similarity for L5

switch to
similarity for L10

HLE6

Figure 19: Results - HLE clusters

 46

HSE Subjects
As before, this dataset also proves the higher accuracy of a longer exploratory

phase, as shown in Figure 20. In addition, given the relative lower degree of noise

(small error), our simplistic engine can better predict the users preferences, thus

producing better results overall.

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0
L5
L10
Log. (L0)
Log. (L5)
Log. (L10)

switch to
similarity for L5

switch to
similarity for L10 HSE

Figure 20: Results - HSE subjects

HSE clusters

Figure 21 shows the results for each of the six HSE clusters. Once again we can

see that in several cases the longer learning phase proves useful to decipher these

subject’s split personality characteristics.

 47

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE1
L5-HSE1
L10-HSE1
Log. (L0-HSE1)
Log. (L5-HSE1)
Log. (L10-HSE1)

switch to
similarity for L5

switch to
similarity for L10 HSE1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE2
L5-HSE2
L10-HSE2
Log. (L0-HSE2)
Log. (L5-HSE2)
Log. (L10-HSE2)

switch to
similarity for L5

switch to
similarity for L10 HSE2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE3
L5-HSE3
L10-HSE3
Log. (L0-HSE3)
Log. (L5-HSE3)
Log. (L10-HSE3)

switch to
similarity for L5

switch to
similarity for L10 HSE3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE4
L5-HSE4
L10-HSE4
Log. (L0-HSE4)
Log. (L5-HSE4)
Log. (L10-HSE4)

switch to
similarity for L5

switch to
similarity for L10 HSE4

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE5
L5-HSE5
L10-HSE5
Log. (L0-HSE5)
Log. (L5-HSE5)
Log. (L10-HSE5)

switch to
similarity for L5

switch to
similarity for L10 HSE5

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L0-HSE6
L5-HSE6
L10-HSE6
Log. (L0-HSE6)
Log. (L5-HSE6)
Log. (L10-HSE6)switch to

similarity for L5
switch to

similarity for L10 HSE6

Figure 21: Results - HSE clusters

 48

C h a p t e r 8

NEXT STEPS: USING A COMMERCIAL ENGINE

Although not implemented in this work, a natural follow-up would be to

replace our simplistic recommendation engine for a full-fledged commercial

engine, and re-test. This chapter presents a detailed analysis of how that could

be accomplished with one of the leading recommendation engines in the

market today.

The Recommendation Engine
Even though current recommendation engines are similar in the semantics of

their metrics, we will base this chapter on the specific information that derives

from the recommendation engine we selected for this experiment. While we do

so at some cost in terms of general applicability of the results, we hope that the

increase in details that using a specific engine will allow for will more than

outweigh the small incompatibilities for applying the results of this work

universally.

We selected SaffronOne, from Saffron Technology in North Carolina, as the

engine of choice for this work. SaffronOne was one of the few engines available

that had a flexible enough programmatic API. Without such flexibility we would

not have been able to reconfigure the selection algorithms to match our

hypothesis. In addition, SaffronOne’s choices of technology platform, design, and

speed were compatible with our own experimental environment.

 49

SaffronOne
The technology behind most recommendation engines are closely guarded

secrets, since they embody the company’s competitive advantage. SaffronOne is

not an exception. Therefore, we have focused this chapter in explaining what are

the metrics that we obtain from SaffronOne are rather than describing how

exactly these metrics are computed.

SaffronOne has the concept of an “agent”, which loosely equates to a personal

advisor for each user. It also contains a concept of a “memory”, or essentially a

history of all the past interactions the user has had with different products. In

addition, products are outfitted with “attributes” that characterize them.

An agent learns about a user’s preference by observing an user’s response (e.g.

“LIKE”) on a given product (more accurately, a vector of attributes). The

observe() API call is used for that purpose, as shown in Figure 22.

Internally, the SaffronOne agent is keeping track of the associations between the

responses and the attributes, and in that way it learns about the user’s preferences

for a given response.

observe(LIKE/DISLIKE,)

User selects
LIKE or

DISLIKE

Each product has a vector of
attributes that characterizes
it. This vector is sent to the
agent so that it can learn.

SaffronOne’s agent internally
computes a “model” for the

user, based on the
associations between

responses (LIKE/DISLIKE)
and attributes

observe(LIKE/DISLIKE,)

User selects
LIKE or

DISLIKE

Each product has a vector of
attributes that characterizes
it. This vector is sent to the
agent so that it can learn.

SaffronOne’s agent internally
computes a “model” for the

user, based on the
associations between

responses (LIKE/DISLIKE)
and attributes

Figure 22: Learning in SaffronOne through the
observe() call

 50

In order to obtain the agent’s rating for a given product, SaffronOne provides the

imagine() call. As shown in Figure 23, the application is responsible for selecting

first the product it wants ranked and second the type of response (e.g. LIKE,

DISLIKE) it wants the ranking for. SaffronOne keeps track of associations by

response types and thus an imagine() call with “LIKE” as the response target

might yield a completely different result than a call with “DISLIKE”.

imagine(LIKE/DISLIKE,)

imagine(LIKE/DISLIKE,)

imagine(LIKE/DISLIKE,)

The application selects
which “response” it wants
to obtain ratings for (e.g.

LIKE or DISLIKE).We ask the agent to imagine the
strength of an associat ion between

a product and a response.
If we have mult iple products, we

do this for each of them.

Indication

Credibility

Experience

Belief

imagine(LIKE/DISLIKE,)

imagine(LIKE/DISLIKE,)

imagine(LIKE/DISLIKE,)

The application selects
which “response” it wants
to obtain ratings for (e.g.

LIKE or DISLIKE).We ask the agent to imagine the
strength of an associat ion between

a product and a response.
If we have mult iple products, we

do this for each of them.

Indication

Credibility

Experience

Belief

Figure 23: Rating different products in SaffronOne
via imagine() call

Each imagine() call yields one primary measurement, Indication, and three

secondary ones: Credibility, Experience, and Belief.

• Indication is a measure the similarity value, and the one most used in the

recommendation engines.

 51

• Credibility is a measure of both an individual’s strength of “belief” along

with that individual’s level of “experience”. It is equal to Experience times

Belief.

• Experience measures the degree of familiarity between the attributes and

specific associations. New features and new feature combinations will be

calculated as lower levels of experience, whereas associations and features

that have been seen many times before will translation into higher levels

of experience.

• Belief measures the extremeness of the indications. One very strong

probability is more credible than a number of weak ones. This is akin to

“clarity”. If one perspective looks like noise, it should be weighted less

than another that more clearly perceives a strong indication.

Combining different responses into one metric
As described above, SaffronOne provides a set of metric for a given response

type. Without getting ahead of us, our experiment (to be explain in subsequent

chapters) requires the user to select one of two possible responses, LIKE or

DISLIKE. The SaffronOne agent will therefore learn according to these two

different response types. However, when we need to recommend a new product

to the user we must find a way to combine the metrics from both response types

into a single number that we will use to rank all the products.

Indication
The first measure we will define attempts to capture the overall “similarity”

strength for a given product. This metric will be used to select products in the

baseline version of our experiment, and resembles the selection criteria that

traditional recommendation engines employ.

 52

As Figure 24 shows, the indication value is computed via two consecutive

imagine() calls for the same product, one with each possible value of the response

type (LIKE and DISLIKE). These calls result in two sets of {indication,

credibility, experience, belief} metrics, of which we only utilize the indication

values. The overall product indication is thus defined as the difference between

the indication that the product is LIKEd and the indication that the product is

DISLIKEd. Since indication values lie in the [0…1] range, indication values lie in

the [-1…1] range.

imagine(LIKE,)

imagine(DISLIKE,)

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Indication =

IndLIKE - IndDISLIKE

imagine(LIKE,)

imagine(DISLIKE,)

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Indication =

IndLIKE - IndDISLIKE

Figure 24: Computing Indication from Credibility
for LIKE and DISLIKE

Novelty
The second metric we need to define is needed to explore our hypothesis of an

“exploratory” agent. We have used SaffronOne “experience” metric for this

computation. The idea is to come up with a number that will represent this user’s

familiarity with the product we are ranking. In a sense, novelty is the opposite of

experience, as defined in this work. With such a novelty measure we can embody

our active learning hypothesis by sorting all the available (still not shown)

products on their novelty values and selecting the product whose novelty is

highest.

 53

Figure 25 shows the computation of Novelty. Experience values start at zero and

grow logarithmically towards one. In order to combine our learned values for

both LIKE and DISLIKE responses, we first return the experience levels to their

raw values via the exp() function. Notice that in this case we add both experience

levels as we it is not relevant whether we LIKEd or DISLIKEd the product, but

rather whether we “have seen” it before. Once we have added the raw experience

levels we compute the logarithm to bring the value back into the [0…1]. Finally,

since Novelty is a measure of “non-experienced” we invert the value subtracting

it from one. Thus, Novelty values lie in the [0…1] range whereas low values

mean well-known products and high values means unexplored territory.

imagine(LIKE,)

imagine(DISLIKE,)

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Novelty = 1 - ln[exp(ExpLIKE) + exp(ExpDISLIKE)]

imagine(LIKE,)

imagine(DISLIKE,)

IndLIKE
CredLIKE
ExpLIKE
BelLIKE

IndDISLIKE
CredDISLIKE
ExpDISLIKE
BelDISLIKE

Novelty = 1 - ln[exp(ExpLIKE) + exp(ExpDISLIKE)]

Figure 25: Computing Novelty from Experience of
both LIKE and DISLIKE

Implementing the Agents Using SaffronOne
In what follows, we provide specific implementation details for the two different

agents: myopic and active, using the SaffronOne platform. All the details

necessary to run the same experiment as presented before are provided.

 54

The Myopic Agent

Figure 26 shows the myopic agent flow for each user. Vectors are denoted in

bold font and “1” denotes LIKE while “0” denotes DISLIKE. Last, but certainly

not least, we can build in all our agents the capability of dealing with LIKE-only

results or LIKE and DISLIKE results, in order to be able to explore different

active learning alternatives.

Pick first
product x at

random

Get rating r
for x from
truth table

Learn
through

observe(x,r)

imagine()
and select x

Loop while
prods

unselected

For all
unselected
products p

imagine(p,1)
imagine(p,0)

likeOnly?���� Ip = Ip,1
Else���� Ip = Ip,1 – Ip,0

Select x such that
Ix is MAX

Uses only getIndication()
measure to select the product to
recommend next

~ 12s

Pick first
product x at

random

Get rating r
for x from
truth table

Learn
through

observe(x,r)

imagine()
and select x

Loop while
prods

unselected

For all
unselected
products p

imagine(p,1)
imagine(p,0)

likeOnly?���� Ip = Ip,1
Else���� Ip = Ip,1 – Ip,0

Select x such that
Ix is MAX

Uses only getIndication()
measure to select the product to
recommend next

~ 12s

Figure 26: Myopic agent logic flow

The myopic agent is the simplest of them all. Products are “learned” by looking

up in the rankings set to see if the recommended product was liked by this

particular user or not. At recommendation time, we loop through all the as-yet-

 55

unselected products and use the imagine() calls to obtain indication values for

LIKE and DISLIKE responses. We compute an overall indication value based

on these metrics. After we have all the indication values for the candidate product

set we sort on it and recommend the product with the highest indication. The

loop continues until there are no more products in the candidate set at which

time we move to the next user.

The Active Agent

The active learning agent uses the “switch” parameter to control how many

iterations it spends “exploring” the space before it switches to recommending on

indication (as the myopic agent does). While exploring, this agent uses the

experience values from Saffron to put together a measure of “novelty” for each

product, ultimately selecting the product with the highest novelty value. When

recommending on similarity, the logic is identical to the myopic agent. Figure 27

shows the active agent flow for each user.

 56

Pick first
product x at

random

Get rating r
for x from
truth table

Learn
through

observe(x,r)

imagine()
and select x

Loop while
prods

unselected
For all

unselected
products p

imagine(p,1)
imagine(p,0)

Np = Ip,1 – Ip,0

Select x such that
Nx is MAX

Uses only getExperience()
measure to select the product to
recommend next

shown
>

switch ?

Np = 1-
ln[exp(Ep,1)+

exp(Ep,0)]

YES NO

shown counts the number of
products that have already been
recommended to the user.
switch is a parameter to stop
“exploring” and start using what
we have learned recommending
on indication (as in the myopic
agent).

increment
shown
count

likeOnly?���� Np = Ip,1
Else���� Np = Ip,1 – Ip,0

Pick first
product x at

random

Get rating r
for x from
truth table

Learn
through

observe(x,r)

imagine()
and select x

Loop while
prods

unselected
For all

unselected
products p

imagine(p,1)
imagine(p,0)

Np = Ip,1 – Ip,0

Select x such that
Nx is MAX

Uses only getExperience()
measure to select the product to
recommend next

shown
>

switch ?

Np = 1-
ln[exp(Ep,1)+

exp(Ep,0)]

YES NO

shown counts the number of
products that have already been
recommended to the user.
switch is a parameter to stop
“exploring” and start using what
we have learned recommending
on indication (as in the myopic
agent).

increment
shown
count

likeOnly?���� Np = Ip,1
Else���� Np = Ip,1 – Ip,0

Figure 27: Active learning agent logic flow

As before, a provision has been made in the agent’s logic to use LIKE only

measurements, or LIKE and DISLIKE both. This provision is important for

those cases where the response data is heavily biased towards one or the other

(i.e. users dislike 80% of the products in the set).

Technical details
The experimental setup can consist of several machines that run each agent

separately but in parallel, to conserve time. Each of these machines must have the

following environment:

 57

• Windows 2000 operating system

• Java JDK 1.3.02

• SaffronOne V 2.01

All of the agents are written in Java, using the SaffronOne libraries. No other

non-JDK libraries need be used. Input parameters can be read from plain text

files and results can be output into text files as well.

Some of the SaffronOne calls used by the agents are not available to the public

and thus it might be necessary to obtain a special “unlocked” version of the

SaffronOne library to run these experiments.

 58

C h a p t e r 9

CONCLUSIONS

The hypothesis of this work is centered on the need for recommendation engines

to actively explore the space, at the expense of short-run success, to provide

better overall recommendations. An overview of the field and the different

recommendation engines opened this work, followed by a detailed description of

our hypothesis and its associated metrics. In order to validate the hypothesis, an

experiment was devised and executed. A detailed description of the data and

experiment is provided. The results from the experiment and the associated

analysis have been presented. Finally, detailed suggestions for future work in

extending this work are given.

Our experimental results appear to validate our hypothesis. As shown in Chapter

7, active learning agents outperform myopic agents even in a short

recommendation span of only 20 products, in spite of having to use some of

those products up to explore the space. Some of our key findings include:

• Small active learning thresholds seem to be sufficient to learn about the

space. In most cases our L5 agent outperformed out L10 agent. We

believe that this might be due to the length of the recommendation span

(only 20 products, 10 out of which were used for “exploring” by the L10

agent). However, the fact that L5 performs so well might be related to the

number of real different preference clusters that might be available to the

engine. This number might be, in all practical cases, small. Thus a well

crafted engine that “touches once” each cluster and learns whether the

user likes or not that “type of products” would be enough. If there are

 59

less than 5 of these clusters then the other 5 exploratory

recommendations of the L10 agent are essentially “wasted”.

• Larger exploratory phases are indeed superior than shorter ones for the

more complex cases. In agreement with our previous finding, we

observed that for some of the most complex datasets (the split

personality ones), the L10 agent outperformed L5. This is rational as the

split personality feature of these subjects might have increased the

number of “liked clusters” thus requiring more exploratory

recommendations to learn about them all.

• Similarity-only engines can get lost in a sub-optimal state looking for a

preferred cluster. In a couple of occasions we observed the myopic agent

actually going down in accuracy as the iterations grew. Our belief is that

this is symptomatic of the case when the myopic agent by sheer luck

started in a very unfavorable region of the preference space and thus

takes a long time to “get to” the closest preferred cluster, where its

performance goes up.

Even though our results have been very encouraging, a reality check is in order.

We used a very simplistic distance-based recommendation engine. Most

commercial-grade engines should easily outperform this one and even include

some of the ideas presented in this work. They do not, to the best of our

knowledge, include the idea of orthogonality in the recommendation set however.

In order to rubricate these results, the experiment should be re-run with a

commercial engine, such as SaffronOne, as explained in Chapter 8. We expect the

results of such a test to be less dramatic than the ones presented here, yet still

significative.

 60

BIBLIOGRAPHY

Ansari, Asim; Essegajer, Skander;
Kohli, Rajeev. Internet
Recommendation Systems, Columbia
University, December 1999.

Aparicio, Manuel; Strong, Paschal.

Propagation Controls for True
Pavlovian Conditioning. Book
chapter, 2000.

Ariely, Dan; Lynch Jr, John; Aparicio,

Manuel. Which Intelligent Agents are
Smarter? An Analysis of Relative
Performance of Collaborative and
Individual Based Recommendation
Agents. MIT, Fuqua, Saffron,
1999.

Gershoff, Andrew; West, Patricia.

Using a Community of Knowledge to
Build Intelligent Agents. University
of Texas – Austin, 1999.

Glance, Natalie; Arregui, Damián;

Dardenne, Manfred. Knowledge
Pump: Community-Centered
Collaborative Filtering, Xerox
Research Centre Europe, 1997.

Macready, William G. Tailoring
Mutation to Landscape Properties,
Bios Group L.P., 1996.

Nichols, David M. Implicit Rating and

Filtering. Lancaster University,
UK, 1998.

Palme, Jacob. Choices in the

Implementation of Rating. Working
paper, July 1997.

Rabelo, Luis. Which Intelligent Agent is

Smarter? A Comparison. SDM
Thesis, MIT/Sloan, January 2001.

West, P.; Ariely, D.; Bellman, S.;

Bradlow, E.; Johnson, E.; Kahn,
B.; Little, J.;Schkade, D. Agents to
the Rescue?, Working paper, MIT,
February 1999.

