
Modeling Behavior with Personalities

Luis Blando
Operations Systems Lab
GTE Laboratories, Inc
40 Sylvan Road, MS-40

Waltham, MA 02451 USA
lblando@mit.edu

Karl Lieberherr
College of Computer Science

Northeastern University
360 Huntington Avenue
Boston, MA 02115 USA
lieber@ccs.neu.edu

Mira Mezini
University of Siegen

FB-12. Hoelderlinstr. 3. D-
57068, Siegen, Germany
mira@informatik.uni-

siegen.de

Abstract
Decoupling behavior modeling from a specific

inheritance hierarchy has become one of the challenges for
object-oriented software engineering. The goal is to
encapsulate behavior on its own, and yet be able to freely
apply it to a given class structure. We claim that standard
object-oriented languages do not directly address this
problem and propose the concept of Personalities as a
design and programming artifice to model stand alone
behavior that embodies what we have termed micro-
framework style of programming. Allowing behavior to
stand alone enables its reuse in different places in an
inheritance hierarchy. Dynamic personalities, a variation
to the basic ideas that helps, among other things, with the
object migration problem, is also discussed. We present a
potential Personalities implementation by extending the
Java programming language.

1. Introduction

If we take a bird’s eye view of any given software
system, we find that its sole purpose is to perform a
function for its user. The “black-box” metaphor attests to
exactly this fact. A given software application has a set of
inputs, and produces a set of outputs. At a finer granularity,
we find that we can decompose a large system into smaller
functions that collaborate to produce the desired behavior.
This strict functional decomposition fueled the structured
programming approach to software development.

Doing structured programming means decomposing the
functionality of the entire system into many functions,
smaller in scope, and with clear interfaces. A “privileged”
function initiates the program’s execution and maintains
the flow of control, yielding to sub-functions as needed. It
is easy to see “what the program is doing”.

The main problem with strict functional decomposition,
however, resides in the fact that the data over which the
functions operate are spread throughout the program, with
no explicitly guaranteed integrity. Object-oriented
programming grew to address this problem. In addition to
decomposing a system into functions, we find groups of

data that share a set of characteristics and group them in
new entities that we term classes. The functions are then
mapped onto these classes. Explicit guarantees are set forth
with respect to the integrity of the data an object (that is, an
instance of a class) contains.

After initial analysis, we are left with both a functional
and a data decomposition of the problem domain. The
outcome of functional decomposition during the analysis
and design phases of the software lifecycle is a list of roles
and responsibilities. Some object-oriented methodologies,
such as [1], are specifically oriented to the discovery and
modeling of these roles while others are not. Nevertheless,
roles can often be found when inspecting the dynamic
views of the system (i.e., sequence diagrams, use-case
diagrams, object-interaction diagrams, etc.)

Our position is that it is not only convenient but
necessary to use roles (instead of classes) in the dynamic
views of the system. Problem domain experts usually speak
in these terms, thus allowing the software engineer to
clearly validate her (role-based) model against these
experts. From our experience in industry we have found
that one of the first hurdles that a designer encounters when
modeling a system is how to allocate these roles to different
objects. Unfortunately, the mapping of the functional-space
onto the data-space is not one-to-one or many-to-one, but
rather many-to-many. In other words, a given function
might be required of more than one data abstraction. In this
paper, we’ll call these functions popular.

Coming from an era where the duplication of the same
data in different places of a program had created havoc for
software engineers, the object-oriented camp naturally
leaned towards modeling the class hierarchy to closely
resemble a data decomposition hierarchy. This gave
practicing software engineers the “when in doubt, follow
the data” rule of thumb. Practically, this means that early
on, somewhat arbitrary decisions need to be made when
assigning popular behavior to classes. This has one of two
possible consequences. Either spurious associations
between classes are introduced or behavior code needs to
be duplicated. The former arises in the case of a class that

mailto:lblando@gte.com
mailto:mira@informatik.uni-siegen.de
mailto:mira@informatik.uni-siegen.de

needs to play the same role but has no domain-based
relationship with the class that ends up implementing the
role. If we aim to preserve a single implementation, the
second class will need an association with the role-
implementing one to make use of that implementation. The
latter consequence arises when an association between the
two classes playing the same role cannot be supported, and
thus the code for the role needs to be duplicated.

Takeoff
Ascend
Flap
Descend
Land

JumpInTheWater
Submerge
MoveFin

Rise
JumpOutOfTheWater

Prepare
MoveFoot
Stabilize
AtEase

Fly

Swim

Walk

Figure 1: Zoo’s functional decomposition

In this paper, we show the drawbacks resulting from the
fact that object-oriented languages are geared mostly
towards supporting the data decomposition approach and
lack appropriate support for expressing the functional
decomposition of application domains. This motivates the
need for linguistic constructs that would allow roles to
stand alone throughout the analysis, design, and coding
phases as a solution to this problem. We propose the
concept of Personalities as a linguistic artifact to be added
to the standard object-oriented concepts for explicitly
encapsulating roles from the functional decomposition at
the implementation level. A role (personality) is attached to
a class via a personifies clause. In order to be a valid
personification of a personality, a class must obey well-
defined rules. The same holds for the clients of a
personality.

The remainder of the paper is organized as follows. In
the following section we illustrate the issues related to the
lack of appropriate linguistic constructs for expressing the
functional decomposition by means of an example. In
section 3, the concept of Personalities is presented as the
solution to these problems. Section 4 introduces dynamic
personalities while 5 discusses the relationship between
personalities and frameworks. Section 6 briefly talks about
the implementation. Section 7 suggests future work, 8
evaluates previous works, and 9 concludes the paper.

2. Issues in Modeling Popular Functions

As a very simple example, assume the problem domain
has to do with modeling the animal kingdom for a Zoo
software system. Early on you detect that most animals
perform the same basic functions (i.e. walk, fly, swim) in
pretty much the same manner. These would be what we’ve

termed “popular” functions. A (partial) functional
decomposition of the problem domain is shown Figure 1.

From a design perspective, one would like to implement
the popular functions (i.e. fly, walk, swim) using their sub-
functions (i.e. takeoff, ascend, etc.) and then require
subclasses to override these sub-functions. At this time in
the design process, the software engineer can (and should,
in the authors’ opinion) fix the semantics of, for example,
the Fly() function. One such semantics, using Java [2],
follows:

void Fly(int miles, int altitude) {
 Takeoff();
 for (int a=0; a < altitude; a++) Ascend();
 while(miles--) Flap();
 for(int a=altitude; a > 0; a--) Descend();
 Land();
}

Meanwhile, analysis also yields a partial data
decomposition, shown (simplified) in Figure 2. Abiding by
the “follow-the-data” rule of thumb means that the class
diagram will more than likely follow this data
decomposition. Mapping the popular animal functions,
however, presents the problems discussed previously, as
more than one class needs to provide the same function(s).
For example, both whales and crocodiles swim, pelicans
and bats fly, while crocodiles and sea lions walk.

We can always push the placement of these popular
functions up the class hierarchy, even all the way up to the
Animal class. Unfortunately, this is incorrect from a design
perspective, since not all animals perform all functions.
Another approach would be to duplicate the code for the
popular behaviors (i.e. Fly(), Walk(), and Swim()) at the
classes where they are needed. This is, however,
undesirable from a maintenance perspective.

Whale
SeaLion
Bat

Crocodile
Pelican
Goose

Mammal

Oviparous

Animal

Figure 2: Zoo’s data decomposition

Even if you could somehow manage to share one single
implementation of these popular behaviors, the problem of
correctly allocating functionality to the classes still remain.
At a programming level, you still need to advertise that
Whale supports Swim(), Pelican supports Walk(), and
SeaLion supports both Walk() and Swim(). This allows
for the code of the clients of Whale, Pelican, and
SeaLion to be type-checked at compile time.

The concept of interfaces, as understood in the Java
programming language helps alleviate this latter problem
but does not help with the former. Interfaces allow a class
to advertise the implementation of selected methods by

declaring its compliance with arbitrary sets of method
signatures. The popular as well as the smaller-granularity
functions would be part of the interface. An interface
contains only method signatures. Therefore, each class that
implements the interface must provide the implementation
of the popular function. This opens up the possibility that
the semantics given to the Fly() function differ in the
various implementations, greatly jeopardizing the client
systems that depend on the specific (intended) semantics of
a given interface.

Another approach to this problem would be to model the
popular behaviors as abstract classes, using multiple-
inheritance to extend from them as needed. The “complete”
multiple-inheritance hierarchy for modeling our animal
kingdom is presented in Figure 3.

This alternative, while the closest in spirit to our goals,
has a number of implications. First, the semantics of
multiple-inheritance have traditionally been ambiguous and
are not widely understood. Second, not all programming
languages support multiple-inheritance. Specifically, Java
does not. Third, and most important in our opinion, is the
fact that the multiple-inheritance solution is based on
programming with artifacts that are not part of the problem
domain. For instance, there is no concept of an
AFlyingThing ”entity” in the application domain. Flying
is merely a behavior that can be performed by several
abstractions in the application domain. We are artificially
creating new classes out of the need to turn behavior into
first-class objects. Inheritance is used for two distinct
relationships; to extend data abstractions (i.e. Whale “IS-
A” Mammal) and to connect behavioral abstractions (i.e.
Whale “PLAYS-THE-ROLE-OF” ASwimmingThing). In
other words, there’s no way to separate these two
potentially different relationship types.

Animal

Mammal Oviparous

Bat SeaLion Whale Pelican Goose Crocodile

AWalking
Thing

AFlyingT
hing

ASwimming
Thing

Figure 3: ZooSys using multiple inheritance

To summarize, we believe that the ideal situation would
be one in which we are allowed to model the behavior (in a
functional-decomposition-biased manner) and the class
hierarchy (using data decomposition) independently, and
then freely apply behavior to classes. Such an approach
would yield the most reuse and, more importantly, would

allow us to design the system without unwanted artifacts
that are not part of the problem domain.

Animal

Mammal Oviparous

Bat SeaLion Whale Pelican Goose Crocodile

Walker Flier Swimmer

<<personifies>>

 Figure 4: ZooSys using personalities

3. Modeling with Personalities

For this purpose we introduce personalities as a
language construct to encapsulate high-level, micro-
framework style behavior. Our concept lies in the “middle-
ground” between abstract classes and interfaces, as Java
understands them. Personalities are close in spirit to
abstract classes. However, unlike abstract classes,
personalities provide some semantic guarantees to the
systems that use them.

3.1 Syntax and Usage
Defining a personality is similar to defining a class, with

a few added keywords. For example, the Flier personality
can be defined as follows (new keywords are underlined):

// Flier.pj
personality Flier {
 // upstream interface. Must implement here.
 public
 void Fly(int miles, int alt) {
 Takeoff();
 for (int a=0; a < alt; a++) Ascend();
 while(miles--) Flap();
 for(a = alt; a > 0; a--) Descend();
 Land();
 }
 // downstream interface. Don’t impl here.
 di void Takeoff();
 di void Ascend();
 di void Flap();
 di void Descend();
 di void Land();
 private some_other_function() {...}
}

A personality definition consists of three basic elements:
• The upstream interface, made up of all the

member functions that clients of this personality
can access (one or more). These encapsulate what
we have been calling “popular” behavior.

• The downstream interface, composed of only
signatures for functions prepended by the di
keyword. These are the functions that personifying
classes must implement. Clients of the
personalities cannot access these methods.

• Any private functions that the personality might
need to implement its behavior. These functions
are not visible either upstream or downstream.

• Any role-specific attributes, if needed.
• A constructor to initialize the state, if needed.

When a class decides to personify a given personality, it
needs to declare its intent, as well as provide the methods
specified in the downstream interface. For example, a
definition of the Bat class follows:

public class Bat extends Mammal personifies Flier
{

 // intrinsic properties of the Bat class
 boolean in_Dracula_mode;
 void UpdateMode(Time time) {
 if (time>SUNLIGHTOUT)in_Dracula_mode=true;
 else in_Dracula_mode=false;}
 Bat() { in_Dracula_mode = false; }
 boolean BiteBeautifulLady(Lady lady) {
 if (in_Dracula_mode) lady.BittenBy(this);
 return in_Dracula_mode; }
 // DI implementation for Flier...
 Compass _compass = new Compass();
 void waitUntilInDracula() { // sleep until
 while(!in_Dracula_mode) { // we can go to
 UpdateMode(new Date()); // Dracula mode
 Thread.sleep(5000); } } // to Fly...
 void Takeoff() { waitUntilInDracula(); }
 void Ascend() { /* not shown */ }
 boolean ThereYet(int x, int y) {
 return _compass.where().x() == x &&
 _compass.where().y() == y; }
 void FlapTowards(int x, int y) {
 if (_compass.unset())_compass.set_tgt(x,y);
 // do whatever I need to move...
 _compass.update_position(); }
 void Descend() { /* not shown */ }
 void Land() { /* not shown */ } }

Figure 4 shows the different classes, personalities, and
their relationships for the running example. The link from
the personalities to the classes that aim to personify them is
through small-granularity functions. For instance,
Takeoff(), Ascend(), etc., are examples of such
functions. We call the classes that embody personalities the
personifying classes. A personality lies in between the
client code that makes use of it and the class that embodies
it. It is connected to the client code by the “upstream“
interface, and to the personifying classes by the
“downstream“ interface. The personality expects from the
personifying class the implementation of the lower-level
functions. In turn it provides clients with the high-level
functions in the upstream interface. This resembles the
mental picture of the level of abstraction and the
granularity diminishing as we move from client’s code, to
personality’s code, to personifying classes’ code.
Personalities restrict how they present themselves
upstream, that is, to the user of the system. The idea is to
only expose the popular behavior in the personality (i.e.
Fly()) and disallow the use of any of the smaller

granularity functions (i.e. Takeoff()) by the clients, as
illustrated in Figure 5.

Even though Figures 3 and 4 look suspiciously similar,
there is an essential difference in the type of links between
the leaf classes (i.e. Whale, Bat, etc) and the behavior-
encapsulating classes (i.e. AFlyingThing/Flier, etc). In
Figure 3, inheritance is used to link both data and
behavioral abstractions. While this duplicity might be
convenient, it gets in the way of a proper design when you
actually need to separate the concerns.

As an example, let's take the class Pelican. Data-wise,
it is a special case of the Mammal abstraction. At the same
time Pelican can play the role of a Walker and a Flier.
Using only MI, we are forced to use the same mechanism
to express this relation. Hence Pelican would also inherit
from Walker and Flier. However, I might want to
express "IS-A" relationships also among behavioral
abstractions. For instance, we could have a super popular
behavior, called Movable, which has, for instance, an
attribute called speed. This attribute is inherited from all
derived behavioral abstractions. As a result, Pelican
would inherit speed twice, which is incorrect!
Furthermore, this attribute definition should be invisible for
the Pelican, since it is part of the implementation of the
popular behavior. However, it cannot be simply declared
private since this would prevent behavior abstractions
that are specializations of Movable to inherit the attribute.

Analogously, assume that two different developers
implement Walker and Flier (without inheriting from
the same behavioral abstraction). Suppose that the
implementation of the respective popular functions uses
operations that accidentally have the same name, say,
calculateSpeed(). Again, we have a conflict in
Pelican. Making the implementation private does not
solve the problem, since it prevents us from specializing
those methods for special behavioral abstractions, let say
SpecialFlier.

In the authors’ opinion, different scoping rules for "IS-
A" relationships between abstractions of the same kind and
"PLAYS-THE-ROLE-OF" relationships between data and
behavioral abstractions are needed. With Personalities this
distinction is made very clear. A personality is the unit for
behavioral abstractions. As such, it clearly separates: (a)
what is expected in order to provide a popular behavior, (b)
what is provided, (c) what is locally needed to implement
what is provided, and (d) how what is provided is
implemented. The interface to the data abstractions is
different from the interface to possible special behavioral
abstractions. None of the internal implementation details
are visible to data abstractions. As far as special behavioral
abstractions are concerned, the personality developer is free
to decide which part to make private and which protected.

Thus, Personalities can be thought of as interfaces
enhanced with the ability to implement behavior. The

underlying idea is to try and provide an artifact to model a
relationship between data and behavioral abstractions that
is missing in current OO languages.

3.2 Following the Law of Personalities (LoP)
Personalities must follow a certain set of constraints in

order to provide semantic1 value to the developer of a
system. Abiding by certain rules guarantees the developer
the reusability and, to some degree, the correctness of the
design. It is partially in these rules where personalities
improve over abstract classes. We consider the following
set of requirements for fully exploiting the power of
personality programming. The compiler needs to make sure
that these are met.
1. The downstream interface must be a set of pure

abstract functions.
2. Clients of the personality must not use the links to the

personifying class (i.e. the downstream interface).
3. The implementation of the popular functions must be

protected against changes by the personifying classes.
4. The implementation of popular functions is allowed to

use the DI/UI/local functions and the methods of
classes returned by DI/UI/local functions and nothing
more This includes methods of classes of local data
and of return types. This is analogous to the Law of
Demeter in [14].

Requirement #1 makes personalities uninstantiable on
their own. We are aiming at encapsulating behavior that
might be reused by a number of distinct classes. Therefore,
the “default” versions for the downstream interface
methods might vary greatly in different contexts and thus a
common implementation does not make sense.

Fly()

Takeoff()
Ascend()

Flap()
Descend()

Land() �������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����

����
����
����

��������������
��������������

Flier
Upstream
Interface

Clients
(i.e. SkyWorldShow())

Personifying Classes
(i.e. Pelican, Bat)

Dow nstream
Interface

Figure 5: Anatomy of the Flier personality

Requirement #2 attempts to make personalities the clear
boundary between the clients of the personality (i.e. the
upstream objects) and the personifying classes (i.e. the

1 We claim that Personalities help to provide some level

of semantic guarantees to its users. Strong guarantees, on
the other hand, are not possible since we know of no way
of automatically validating the correctness of a piece of
software.

downstream objects). This aims at providing a specific
layer of design reuse at the personality level. In other
words, by restricting the clients to only use the popular
behaviors provided by the personality, we are guaranteeing
the semantics of the client’s use of the personality. Once
again, the compiler can easily enforce this requirement.

For example, a class that needs to interact with a
Swimmer can only call Swim(int miles, int depth)
and not any of the other functions (i.e. Submerge(),
MoveFin(), etc). The di keyword in the personality’s
definition is aimed at helping the compiler and the user of
the personality to clearly discern what is allowed and what
is not. In the following sample code, both correct and
incorrect use of a personality’s interface are illustrated:

// SeaWorldShow() is a client of Swimmer pers
void SeaWorldShow(Swimmer shamuorflipper) {
 shamuorflipper.Swim(10,10); // ok, ui used
 shamuorflipper.Submerge(); //error,di used
}

Requirement #3 aims at making sure that the
personifying classes do not change the originally intended
semantics for the personality. In other words, if we would
allow a LazyPelican class to do something like:

class LazyPelican extends Oviparous
 personifies Flier {
 ...implementation of downstream interface
 // we shouldn’t redefine Fly(...)!
 public void Fly(int miles, int alt) {
 Takeoff();
 for(int a = 0; a < alt/2; a++) Ascend();
 while(miles--) Flap();
 for(int a = alt; a > 0; a++) Descend();
 Land();
 }
}

the semantic integrity of the system would be
compromised, since this special pelican only flies at about
half the altitude as what the personality promises it would.
Furthermore, since this particular implementation of
Fly(...) contains a logic error, its effects are undefined.
Therefore, the compiler should make sure that personifying
classes implement the downstream interface and any other
private functions, but never the upstream interface.

Finally, requirement #4 makes personalities follow their
own advice by requiring that all communication with the
personifying class be restricted to the functions defined in
the downstream interface. This aims at making sure that the
set of functions is enough to support the semantics of the
personality, and trigger the discovery of new ones if not. It
also forces personalities and personifying classes to have
only one meet point, namely the downstream functions.
The same argument regarding the communication between
clients and personalities set forth in requirement #2 is valid
regarding the implementation of the personality’s high-
level behavior themselves. For example, allowing

personality Flier {
 void Fly(int miles, int altitude) {
 jumpInTheAirAndStartFlapping(); // not in
 } // downstream interface !

might restrict the applicability of this personality only to
Pelican and its subclasses (this is assuming, of course,
that the proper method visibility allows this code to be
accepted by the compiler in the first place!)

3.2.1 Coding guidelines. We also have a couple of
recommendations that help make the software cleaner but
either are not compiler enforceable or would be too
restrictive for large-scale, personality-based component
deployment. The two recommendations follow:

1. The downstream interface functions should have
clearly documented semantics.

2. Only basic object types (i.e. string, int,
Vector<string>, etc.) plus the personality itself
should be passed in parameters and returned from
functions in the downstream interface (of the
personality that acts as the boundary of the unit of
deployment).

Guideline #1 recognizes that it is important for the
semantics of the DI functions to be clearly understood and
defined. These functions are the weak link with regards to
the semantic integrity of the entire system, since they are
the ones implemented by the personifying objects. It is thus
essential for them to be easily understood by the
programmer. For instance, a downstream interface that is
ambiguously defined with respect to its return value format,
such as:

// compute and return today’s date
String Today();

would not be of much help to the developer personifying
this personality, since it provides no clue about the format
the answer must be in.

A compiler can easily check guideline #2, which ensures
an attainable minimum set of pre-required knowledge in
order for any given object to personify a given personality2.
We suggest that the parameters and return values of the
downstream interface methods not be user-defined types,
since this will imply that the personality would forever
need to be deployed with an implementation for the user-
defined types it uses. We require restricting these
signatures to the lowest common denominator for the given
programming language. For instance, this rule hinders the
programmer of a personality from the following declaration
in the downstream interface:

MyDateClass Today(); // return today

This declaration couples the personality with the user-
defined type MyDateClass and damages its reusability.
Using Java’s “standard” Date class, the following would
be preferable.

Date Today(); // return Java’s Date for Today

4. Dynamic Personalities

Making personalities attachable and detachable at
runtime allows us to solve the classic object migration
problem [21]. For example, we might have an object of
class Person that gets hired by a company, and thus needs
to become an object of class Employee, and later gets
promoted, and thus needs to be of type Manager. Common
workarounds for this problem include reclassification (i.e.
reinstantiating an object of the new class that “extends
from” the old class) and delegation (i.e. creating objects
contained by the original that perform the functions of the
new class). Both of these approaches have drawbacks.
Reclassification is not practical in distributed systems since
the old object reference is lost to a new one. Therefore, all
clients need to be updated (a non-trivial task). Delegation is
problematic in strongly-typed languages (i.e. Java)
specially since the old object reference (i.e. Person) needs
to respond to a protocol that it does not know about (i.e.
Employee).

We can extend the Personalities concept to make the
personalities either active or inactive at any given time. A
third-party takes care of activating or deactivating each of
the object’s personalities2. The semantics of personifies
changes from “does” to “can”. That is, the statement

class Person personifies Employee, Manager

states that the class Person might (in the future) personify
an Employee or a Manager. A fresh instance of an object
of class Person does not, by default, contain the behavior
for Employee or Manager. A common protocol for all
personifying classes is then created to maintain this set of
personalities. The “dormant” personalities are activated by
invoking personify(“Employee”) on the object. After
that, the object will behave as an Employee as well.
Similarly, the call forget(«personality») will
deactivate a role and return it to dormant state. Figure 6
shows the common protocol for all personifying classes.

personify(“<p>”) Enable personification of <p>

forget(“<p>”) Disable personification of <p>

personifies(“<p>”) Returns true or false
depending on whether <per> is
enabled in the class.

personalities() Returns a Vector of Strings
with the names of all the
personalities that are enabled in
the class.

Figure 6: Common protocol

The type of a personifying class is the union of the
Personalities it personifies plus its own type3. Thus, a

2 In this paper we ignore the issue of safeguarding these

state changes. However, any authentication/authorization
mechanism would work.

3 The problem of potential name clashes between UI or

Person object that personifies Employee and Manager
can be treated as an Employee or a Manager object.
Solving the object-migration problem now becomes a
simple state change (i.e. joe.personify(“Employee”)).
In this manner, Personalities allow us to preserve object
identity while “increasing” the object’s type, even when
using strongly-typed languages, such as Java.

However, the proposed solution has the drawback that
the developer of the personifying class (i.e. Person) needs
to “think ahead” about all the personalities that might be
personified by the class during its lifetime. This is usually
not a big constraint in controlled systems but might become
a problem in evolving the system after some time. An ideal
situation would be one in which it is not necessary for
classes to declare their ‘expected’ personalities, but rather
any personality can be attached to any class. Fully-
Dynamic personalities, attempt to solve this problem by
lifting all the personality-related code to generic “catch-all”
functions that perform method dispatch dynamically, based
on the personalities that are active/present at the time. A
full discussion of this is outside of the scope of this paper.
However, the reader can consult [3] for more information.

5. Personalities and Frameworks

Frameworks [11] encapsulate behavior at a bigger scope
than Personalities. They provide one or several flows of
control over a set of prototypical classes that abstract the
problem the framework has been built to solve. Just as
Personalities require personifying classes to implement
their downstream interface, an application adapts to a
framework by connecting to the framework’s “hotspots”.
This connection takes the form of inheritance or delegation.

Inheritance, however, cannot be easily used when the
class that is going to extend a hotspot is either already
extending another class in the application domain or when
the same application class should extend two (or more) of
the framework hotspots. Both these situations lead to
multiple-inheritance.

Delegation can be used in these cases, but it is
inconvenient, to say the least. First, the application needs to
instantiate both the framework objects and the delegates
and then make sure that these are correctly registered to be
called later. Second, delegation presents the object identity
problem, as shown in Figure 7. An application-level client
(i.e. OviparousClient()) is passed the hotspot reference.
However, it cannot use the application-side object (i.e.
Oviparous/Pelican) since the hotspot object and the
application-side object are in fact two different types.

Personalities can replace the hotspots and become the
interface between frameworks and applications.

DI methods of different personalities is acknowledged but
not addressed. Renaming techniques could be used to
alleviate this problem.

Application-level classes would then personify the
necessary hotspot(s). The developers can still use the
familiar multiple-inheritance like hierarchy without
worrying about language constraints. Furthermore, the
object identity problem is solved since a class that
personifies a hotspot can actually be accessed as either the
application-side class (i.e. Pelican in Figure 7) or the
framework-side class (i.e. Flier in Figure 7).

Personalities do encapsulate behavior at the micro-level.
Being an application of the template-method pattern [7],
they impose a sequence of lower-granularity operations for
a given high-level operation. We feel such a separation is
healthy and forces the framework developer to clearly
define the semantics that she will require from the
application developer.

Flier

-speed: int
-hsi:FlierImpl

+void Fly(){
 hsi.land();}

Pelican

-pink_level:int

+void land(){...}

FlierImpl

+void land();

OID: Flier@0x0ffe54

void OviparousClient(Flier hs) {
 hs.Fly(); // ok
 ((Oviparous)hs).LayEggs(); // error!
 ((Pelican)hs).LayEggs(); // error!
 //invalid cast
}

OID: Pelican@0x0ffade

Oviparous

-egg_count: int

+void LayEggs()

Figure 7: Object identity and delegation

As explained in [3], personalities can be used to cleanly
compose or integrate frameworks as well. Personalities’
clear rules and non-shallow interfaces provide a nice
demarcation point for the edges of the frameworks.
Personalities can also work alongside other collaboration-
based works, such as APPCs [19].

6. Implementation Details

The development environment assumes that the
developers program solely in Personalities/J, for
“Personalities in Java”. A compiler does the analysis in the
Personality/J code and then translates it into standard Java
at which point a Java compiler takes over. As a
programming language, Personalities/J is loosely defined as
a superset of Java in terms of syntax and semantics, with
the additions of the new elements in the language that we
have previously described.

The compiler generates Java files according to the
diagram in Figure 8. Each personifying class gets one $Ego
object per personified personality. They also get the

popular function proxy that immediately delegates to the
$Ego object, passing itself as a parameter. The $Ego
classes contain the popular function implementation and
they delegate back to the personifying classes for the DI
implementation. Space reasons do not permit us to include
further details. However, the reader is encouraged to
browse the examples in the Personalities home page [3].

interface Flier
{ ... }

class Flier$Ego
{ ... }

class Bat
 implements Flier
 { ... }

class Zoo
{ ... // uses }

personality Flier
{ ... }

Flier.pj

class Bat
 personifies Flier
{ ... }

Bat.pj

class Zoo
{ ... // uses }

Zoo.pj

Flier.java

Flier$Ego.java

Bat.java

Zoo.java

Figure 8: PJ to Java mappings

7. Work in Progress

First, we are investigating a way to allow an already-
implemented class to personify a personality with little
work. For instance, if we already have the class

class SpaceShuttle {
 void EngageRockets() {...}
 void ExitAtmosphere() {...}
 void Orbit() {...}
 void EnterAtmosphere() {...}
 void Land() {...}
}

we shouldn’t need to define Takeoff(), Ascend(),
Flap(), and Descend() so that they simply delegate to
the respective SpaceShuttle methods. A simple name
mapping mechanism would remove the need for these
artifices to be created. For instance,

class SpaceShuttle personifies Flier
 with EngageRockets = Takeoff,
 ExitAtmosphere = Ascend, Orbit = Flap,
 EnterAtmosphere = Descend {}
 // no changes to SpaceShuttle’s code at all

Notice that such a mapping mechanism would also make
it easier for a new class to personify two or more
personalities with semantically equivalent downstream
interface methods. For instance, if one personality calls for
a SaveToDB() function and a different one calls for
PersistYourself(), they both can be mapped to the
same implementation code without having to create two
implementations and having to explicitly delegate from one
to the other.

A slight extension on this simple name mapping idea
could further improve the usability of the personality

concept. If, for instance, you have purchased your ordering
system and your data collection system from different
vendors, you might get something like:
// from Vendor A (in Argentina, for instance)
personality FruitProducer {
 di boolean CheckStockHas(double kilograms); }
// from Vendor B (in the US, for instance)
personality FreezerUser {
 di boolean CheckProdQuant(double pounds); }

in which case you cannot use the simple mapping technique
explained before and are forced to do the conversion on
your own, ending up with something like:
class TheRedAppleInc personifies
 FruitProducer, FreezerUser {
 public boolean CheckStockHas(double kilos)
 {/* implement behavior in metric system */}
 public boolean CheckProdQuant(double pounds)
 { return CheckStockHas(pounds * 0.454); } }

Adding some new syntax and compiler support to
provide “on-the-fly parameter conversion”, like
class TheRedAppleInc personifies
 FruitProducer, FreezerUser with
 CheckStockHas=CheckProdQuant(<pounds>*2.2) {
 public
 boolean CheckStockHas(double kilos) {...}
} // don’t implement CheckProdQuant() at all

would allow slight semantic differences in “peer”
personalities to be handled easily.

Second, we are thinking about different approaches to
provide extensibility and composition of personalities.
Inheritance of personalities seems to be straightforward,
with the commonly-used semantics (i.e. those of Java)
being already applicable with the current ideas. For
example, a Runner extends a Walker and as such it can
specialize Walker’s downstream interface and maybe
require one of its own (probably at a lower granularity).
Composition of personalities, on the other hand, seems to
be a little bit more complicated. Composing two
personalities, such as Flier and Acrobat to get a third,
AcrobaticFlier, might require a third-party class to
personify both, implement one’s DI using the other’s UI,
and export the remaining DI for the end-user class to
personify. Studying how to formalize this asymmetry
remains a topic of current research.

8. Related Work

Our layered approach and usage of the Template
Method pattern [6] makes personalities similar to
frameworks [11]. Frameworks usually encapsulate behavior
for an entire system or application. Analogously,
personalities do the same for individual classes and specific
behavior. For this reason, we call programming with
personalities a micro-framework style of programming. The
entry points to a framework are usually the redefinition or
creation of subclasses to implement certain methods.
Similarly, the link from personalities to the classes that aim

to personify them is through the small-granularity functions
in the DI.

One category of related works includes approaches that
are based on using delegation to emulate modeling roles an
object may play during its life, such as the work by
LaLonde et al. on Exemplar-Based Smalltalk [13] and the
work by Gottlob et al. on extending object-oriented systems
with roles [8]. Both approaches support two kinds of
hierarchies: class and role hierarchies (called exemplars in
[13]). The main focus of these works is, however, on
supporting dynamic modifications of an object’s behavior,
as it undertakes/cancels certain roles and not on explicitly
supporting functional decomposition. Artifacts that model
roles, or exemplars, are strongly bound to a certain class in
the inheritance hierarchy. As a result, it is not possible to
apply the same behavior to different unrelated classes, as it
is the case with, e.g., the Flier Personality being
applicable to both Bats and Pelicans. Again, because of
the focus on supporting evolving objects, there are no
equivalent notions to the upstream and downstream
interfaces of the Personalities.

On the other side, there are several works aimed at
improving the expressiveness of the inheritance structure
by relaxing the class-subclass relationships that could also
support modeling stand-alone behavior that can be reused
in several scenarios. This category includes the work on
mixin-based inheritance [4,5], contracts [10], mixin-
methods [16], MixedJava [6], Rondo [18], and context
relationship [20]. These works share the fact that variations
on a base behavior are modeled in stand alone artifacts
called mixins in [4,5] and [6], contracts in [10], mixin-
methods in [16], adjustments in [18], and context objects in
[20]. These artifacts do not commit to any base behavior
when defined. Rather, they refer to the base behavior by
means of an (unbound) super parameter and the self
reference. The individual approaches differ from each other
on two main points: (1) the level at which the variation is
specified – object vs. class level, and, (2) the time when
variations can be applied – dynamically vs. statically.

From the perspective of this paper, the important point is
that the variations are not coupled to a static inheritance
hierarchy as with standard inheritance. One could use
mixins to model high-level reusable functions, since classes
and mixins can be freely arranged in inheritance chains.
However, these approaches are lower-level with regard to
modeling high-level popular functions as compared to
Personalities. None of them provides for guaranteed
semantics of the popular behaviors and for declaring the
interface expected from the personifying classes. However,
they provide more flexible behavior composition that could
be used to implement Personalities instead of using
delegation.

The work presented in [12] also considers the need for
synthesizing object-oriented and functional
decompositions. The visitor pattern [7] is considered as a

technique for filling the gap. The visitor pattern could be
used in our running example, as follows. First, each popular
behavior will be modeled in a separate visitor class, with
the individual visitor classes all being subclasses of an
abstract Visitor class. The implementation of the popular
behavior would be encoded in visit() messages. All
animals must understand an accept() message taking a
visitor object as a parameter. When the accept() message
is invoked on an animal object with a visitor as a
parameter, the animal object will invoke visit() to the
visitor parameter, passing itself along the invocation. Thus
a client wanting to invoke a popular function on a certain
animal would create an instance of the visitor class for this
popular function and call accept() on the animal with the
visitor as a parameter.

There is a severe problem with this approach. Each
visitor needs to somehow declare to which types its popular
behavior applies. It can not simply accept an object of the
most general type Animal as the parameter of its visit
method, since the compiler in a strongly typed language
like Java would complain when “downstream“ functions
are applied to this object within the micro-framework of the
popular function. In absence of a real downstream
interface, each concrete visitor class would implement as
many different visit() messages as there are concrete
animal classes to which the popular behavior encoded by
the visitor applies. For instance, there will be a visitor class
for the Walker behavior, say WalkerVisitor. This will
have a different visit() methods for Pelican,
Crocodile, SeaLion and Goose, although the
implementations of these messages are the same – each
embodying the same micro-framework of the upstream
message Walk() in the Walker Personality. Not only is
this solution awkward, but it also damages reusability,
since popular functions are still strongly coupled to the data
hierarchy. Adding new animal classes (data abstractions)
and declaring them to personify an existing personality is
impossible without changing the implementation of the
popular functions.

The work on subject-oriented programming [9] aims at
enabling the construction of object-oriented software as a
sequence of collaborating applications, each providing its
own subjective view of the domain to be modeled, and
defined independently from the others. A subject is a
collection of class fragments with each fragment providing
only one subjective view of the “whole“ data abstraction
captured by the class. Personalities can serve for modeling
these fragments, especially when enhanced with
mechanisms for composing them that would enable to
model the composition of fragments into subjects and of
individual subjects into higher-level subjects.

In our own previous work, behavior is described by
propagation patterns (in Demeter/C++ [14]) or adaptive
methods (in Demeter/Java [15]), separate from specific

classes. This separately specified behavior is later reused in
many different class structures. Propagation patterns (or
adaptive methods) are similar in spirit to personalities, they
specify behavior for a family of classes and they both need
to be mapped into specific classes. However, both
propagation patterns and adaptive methods don't have
enforce the laws of personalities as described in this paper.

Our concept of upstream and downstream interfaces is
very similar in spirit to that of provided and required
interfaces in [17]. However, required interfaces refer to
other program modules (ie. other interfaces), whereas a
personality’s downstream interface refers to a class that is
part of the personified object itself. Furthermore, the
different functions in the required set can be serviced from
different modules in a system, whereas only one class must
implement the entire downstream interface. We have
purposely kept a different nomenclature to emphasize the
fact that [17] aims at defining an architecture whereas
personalities work at a much smaller (class) granularity.

9. Conclusions

This paper proposes a small extension to the Java
programming language that refines the interface concept to
allow for partial implementations with some degree of
semantic guarantees. The contributions of the paper are
twofold. It provides a framework for independently
modeling behavior and freely applying it to arbitrary
inheritance trees, and proposes a set of specific design and
programming rules, some of them compiler enforceable, to
enhance the semantic strength of the personalities concept
and thus the final system. As side effects, dynamic
personalities provide a nice solution to the object-migration
problem while the clear rules of LoP make integration and
composition of frameworks simple.

10. Acknowledgements

We would like to thank Johan Ovlinger and the students
of the Advanced OO Software class at Northeastern
University for fruitful discussions. Also, we thank Tony
Confrey of GTE Laboratories for his review of early drafts
of this paper. This work has been partially supported by the
Defense Advanced Projects Agency (DARPA), and Rome
Laboratory, under agreement number F30602-96-2-0239.
The views and conclusions herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory, and the U.S. Government.

11. References

[1] Andersen, E., Reenskaug, T. System Design by Composing
Structures of Interacting Objects. In Proceedings of ECOOP
1992. pp. 131-152.
[2] Arnold, K., Gosling, J. The Java Programming Language, 2nd

Ed. Addison-Wesley, 1998.

[3] Blando, L. Designing and Programming with Personalities.
MS Thesis. Northeastern University (TR# NU-CCS-98-12).
December 1998. (http://www.ccs.neu.edu/home/lblando/personalities)
[4] Bracha, G., Cook, W.. Mixin-based Inheritance. In
Proceedings of OOPSLA 1990.
[5] Bracha, G., Lindstrom, G.. Modularity meets Inheritance. In
Proceedings of IEEE Computer Society International Conference
on Computer Languages (Washington, DC, April 1992), IEEE
Computer Society, pp. 282-290.
[6] Flatt, M., Krishnamurthi, S., Felleisen, M. Classes and
Mixins. To appear in Proceedings of the 1998 POPL Conference.
January 1998 at San Diego.
[7] Gamma E., Helm R., Johnson R., Vlissides J. Design
Patterns. Addison-Wesley, 1994.
[8] Gottlob G., Schrefl M., Roeck Be. Extending Object-
Oriented Systems with Roles. In ACM Transactions of
Information Systems, Vol. 14, No. 3, July 1996.
[9] Harrison W., Ossher H. Subject-Oriented Programming. In
Proceedings of OOPSLA 1993. Sigplan Notices, Vol. 28, No. 10,
pp. 411-428, 1993.
[10] Holland, I. The Design and Representation of Object-
Oriented Components. PhD Thesis. Northeastern University,
1993.
[11] Johnson R. Frameworks = (Components + Patterns). In
Communications of ACM, Vol. 40, No. 10, 1997.
[12] Krishnamurthi S., Felleisen M., Friedman D. Synthesizing
Object-Oriented and Functional Design to Promote Reuse. In
Proceedings of ECOOP ’98, Lecture Notes, 1998.
[13] LaLonde W. R., Thomas D., Pugh J. An Exemplar-Based
Smalltalk. In Proceedings of OOPSLA ’86, ACM Sigplan Notices,
Vol. 21, No. 11, pp. 322-330.
[14] Lieberherr, K. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, Boston, 1996.
[15] Lieberherr K., Orleans D. Preventive Program Maintenance
in Demeter/Java (Research Demonstration). In Proceedings of
ICSE 1997, pp. 604-605, ACM Press, 1997.
[16] Lucas, C., Steyaert, P. Modular Inheritance of Objects
Through Mixin-Methods. In Proceedings of the 1994 Joint
Modular Languages Conference, pp. 273-282.
[17] Luckham, D., Vera, J., Meldal, S.. Three Concepts of System
Achitecture. Stanford University Technical Report, CSL-TR-95-
674, July 1995.
[18] Mezini, M. Variation-Oriented Programming Beyond
Classes and Inheritance. Ph.D. Thesis. University of Siegen, 1997.
[19] Mezini, M., Lieberherr, K.. Adaptive Plug-and-Play
Components for Evolutionary Software Development. In
Proceedings of OOPSLA, 1998 .
[20] Seiter, L., Palsberg, J., Lieberherr, K. Evolution of Object
Behavior Using Context Relations. IEEE Transactions on
Software Engineering. Vol. 24, No. 1, January 1998, pp. 79-92.
[21] Wieringa, R., de Jonge, W., Spruit, P. Using Dynamic
Classes and Role Classes to Model Object Migration. Theory and
Practice of Object Systems, 1995

	Abstract
	Introduction
	Issues in Modeling Popular Functions
	Modeling with Personalities
	3.1 Syntax and Usage
	3.2 Following the Law of Personalities (LoP)

	Dynamic Personalities
	Personalities and Frameworks
	Implementation Details
	Work in Progress
	Related Work
	Conclusions
	Acknowledgements
	References

