OOPSLA 98
Workshop #12: Pragmatic Issues in Using
Frameworks, Implications for Framework Design

Position Paper
Micro-frameworks and Personalities

Luis Blando, GTE Laboratories, Inc., 1blando@gte.com
Karl Lieberherr, Northeastern University, 1ieber@ccs.neu.edu

Mira Mezini, University of Siegen, mira@informatik.uni-siegen.de

(Notice: several portions of this paper have been taken from an early
version of a previous work)

Introduction

Decoupling behavior modeling from a specific inheritance hierarchy has become one of the challenges for
object-oriented software engineering. The goal is to encapsulate behavior on its own, and yet be able to
freely apply it to a given class structure. We claim that standard object-oriented languages do not directly
address this problem and propose the concept of Personalities as a design and programming artifice to
model stand alone behavior that embodies what we have termed micro-framework style of programming.
Allowing behavior to stand alone enables its reuse in different places in an inheritance hierarchy. The
micro-framework style ensures that the semantics are preserved during reuse.

Modeling with Personalities

If we take a bird’s eye view of any given software system, we find that its sole purpose is to perform a
Sfunction for its user. The “black-box” metaphor attests to exactly this fact. A given software application has
a set of inputs, and produces a set of outputs. At a finer granularity, we find that we can decompose a large
system into smaller functions that collaborate to produce the desired behavior. This strict functional
decomposition fueled the structured programming approach to software development.

Doing structured programming means decomposing the functionality of the entire system into many
functions, smaller in scope, and with clear interfaces. A “privileged” function would then initiate the
program’s execution and maintain the flow of control, yielding to sub-functions as needed. It was easy to
see “what the program was doing”.

The main problem with strict functional decomposition, however, resides in the fact that the data over
which the functions operate are spread throughout the program, with no explicitly guaranteed integrity.
Object-oriented programming grew to address this problem. In addition to decomposing a system into
functions, we find groups of data that share a set of characteristics and group them in new entities that we
term classes. The functions are then mapped onto these classes. Explicit guarantees are set forth with
respect to the integrity of the data an object (that is, an instance of a class) contains.

After initial analysis, we are left with both a functional and a data decomposition of the problem domain.
The outcome of functional decomposition during the analysis and design phases of the software lifecycle is
a list of roles and responsibilities. Some object-oriented methodologies are specifically oriented to the
discovery and modeling of these roles while others are not. In the latter methodologies, roles can often be

Page 1 of 9



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

found when inspecting the dynamic views of your system (i.c., sequence diagrams, use-case diagrams,
object-interaction diagrams, etc.)

Our position is that it is not only convenient but necessary to use role names (instead of class names) in the
dynamic views of the system. Problem domain experts usually speak in these terms, thus allowing the
software engineer to clearly validate her (role-based) model against these experts. From our experience in
industry we have found that one of the first hurdles that a designer encounters when modeling a system is
how to allocate these roles to different objects. Unfortunately, the mapping of the functional-space onto the
data-space is not one-to-one or many-to-one, but rather many-to-many. In other words, a given function
might be required of more than one data abstraction. In this paper, we’ll call these functions popular.

Coming from an era where the duplication of the same data in different places of a program had created
havoc for software engineers, the object-oriented camp naturally leaned towards modeling the class
hierarchy to closely resemble a data decomposition hierarchy. This gave practicing software engineers the
“when in doubt, follow the data” rule of thumb. Practically, this means that early on, somewhat arbitrary
decisions need to be made when assigning popular behavior to classes with one of two possible
consequences. Either spurious associations between classes are introduced or behavior code needs to be
duplicated. The former results in the case of a class that needs to play the same role but has no domain-
based relationship with the class that ends up implementing the role. If we aim to preserve a single
implementation, the second class will need an association with the role-implementing one to make use of
that implementation. The latter results when an association between the two classes playing the same role
cannot be supported, and thus the code for the role needs to be duplicated.

In this paper, we show the drawbacks resulting from the fact that object-oriented languages are geared
mostly towards supporting the data decomposition approach and lack appropriate support for expressing the
functional decomposition of application domains. This motivates the need for linguistic constructs that
would allow roles to stand alone throughout the analysis, design, and coding phases as a solution to this
problem. We propose the concept of Personalities as a linguistic artifact to be added to the standard object-
oriented concepts for explicitly encapsulating roles from the functional decomposition at the
implementation level. A role (personality) is attached to a class via a personifies clause. In order to be a
valid personification of a personality, a class must obey well-defined rules. The same holds for the clients
of a personality. Our concept lies in the “middle-ground” between abstract classes and interfaces, as Java
understands them. Personalities are close in spirit to abstract classes. However, unlike abstract classes,
personalities provide guaranteed semantics to the client systems that use them.

Syntax and Usage

Defining a personality is similar to defining a class, plus a few added keywords. For example, the Flier
personality would be defined as follows (new keywords are underlined):

// Flier.pj

personality Flier {

// upstream interface. Must implement here.
public void Fly(int miles, int altitude) {

Takeoff ();

for (int a=0; a < altitude; a++) Ascend():;
while (miles--) Flap();

for(a = altitude; a > 0; a--) Descend();
Land() ;

}

// downstream interface. Don’t impl here.
di void Takeoff();

di void Ascend();

di void Flap();

di void Descend();

di void Land() ;

private some other function() {...}

}

A personality definition consists of three basic elements:
e The upstream interface, made up of all the member functions that clients of this personality can
access (one or more). These encapsulate what we have been calling “popular” behavior. It is here

Page 2 of 9 2



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

where the personality adds value to the design, since it provides a single and unique
implementation of such behavior.

e  The downstream interface, composed of only signatures for functions prepended by the di
keyword. These are the functions that personifying classes must implement. Clients of the
personalities cannot access these methods.

e Any other functions that the personality might need to implement the upstream interface. These
functions are not visible to either clients or personifying classes.

When a class decides to personify a given personality, it needs to declare its intent (via the personifies
clause), as well as provide the methods specified in the downstream interface. For example, a (trivial)
definition of the Mosquito class could be:

public class Mosquito extends Insect
personifies Flier
{
int height = 0;
public Mosquito () {}
private boolean stingingSomebody () {...}
private void jumpInTheAirAndStartFlapping() {}
// downstream interface implementation
public void Takeoff () {
while ( stingingSomebody () ) {
// wait for some time
}
JumpInTheAirAndStartFlapping () ;
}
public void Ascend() {...}
public void Flap () {...}
public void Descend() {...}
public void Land() {...}
}

Figure 1 shows the different classes, personalities, and their relationships for an example that deals with
modeling an (overly simplified) animal hierarchy. Personifies relationships, as well as personalities,
are drawn in dashed lines.

|Wha1e|| Cow|| Penguin|| Mosquito|| Ant ||Locust
v = N ” =

P P
\\ AN AN NP =
AN <o \ >7 P 7
N , ~. N TN 7
\ s - PRGN /

N e \\\\\ ot ~. //

- ~ -
A FooMATT oW
1 Swimmer , 1 Walker 1 Flier

[ b e e e == Fl e e e e =

Figure 1: Animal kingdom using personalities

The link from the personalities to the classes that aim to personify them is through small-granularity
functions. For instance, Takeoff (), Ascend (), etc., are examples of such functions. We call those classes
that embody personalities the personifying class/object. A personality lies in between the client code that
makes use of it and the class that embodies it. It is connected to the client code by the “upstream® interface,
and to the personifying classes by means of the “downstream® interface. The personality expects from the
personifying class the implementation of the lower-level functions. In turn it provides clients with the high-
level functions in the upstream interface. This resembles the mental picture of the level of abstraction and
the granularity diminishing as we move from client’s code, to personality’s code, to personifying classes’
code. Personalities restrict how they present themselves upstream, that is, to the user of the system. The

Page 3 of 9 3



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

idea is to only expose the popular behavior in the personality (i.e. F1y () ) and disallow the use of any of the
smaller granularity functions (i.e. Takeof£ () ) by the clients, as illustrated in Figure 2.

Thus, Personalities can be thought of as interfaces enhanced with the ability to implement behavior, plus
the necessary programming language plumbing to make it happen. The underlying idea is to try to model
frameworks on a small scale. Frameworks usually encapsulate behavior (control of execution flow) for an
entire system or application. Analogously, personalities do the same for individual classes. For this reason,
we call programming with personalities a micro-framework style of programming. The entry points to a
framework are usually the redefinition or creation of subclasses to implement certain methods. Similarly,
the link from personalities to the classes that aim to personify them is through small-granularity functions.

Following the “Law of Personalities”

Personalities must follow a certain set of constraints in order to provide semantic value to the developer of
a system. Abiding by certain rules guarantees the developer the reusability and, to some degree, the
correctness of the design. It is partially in these rules where personalities improve over abstract classes. We
consider the following set of requirements for fully exploiting the power of personality programming. The
compiler needs to make sure that these are met.

1. The downstream interface must be a set of pure abstract functions, with clearly identified
semantics.

2. Only basic object types (i.e. string, int, Vector<string>, etc.) should be passed in
parameters and returned from functions in the downstream interface.

3. Clients of the personality (i.e. the “upstream” objects) must not use the links to the personifying
class (i.e. the downstream interface). These clients should only access the high-level behavior
functions the personality provides.

4. The links to the upstream objects should be semantically distinct from all the functions to be
implemented by the personifying class.

5. The implementation of the popular functions must be protected against changes by personifying
classes.

6. The implementation of the popular functions is allowed to use the smaller-granularity functions to
communicate with the personifying class and nothing more.

Clients
(i.e. SkyWorldShow ())

Upstream '
| Ya 2= Yoy -ty S s 1
: Inferface Ty O Flier
1

1| Takeof £() | [ FlapO | [ Tand( |
Dow hstreaml| L Ascend () | [Descend ()]
nterface” L~ """"H """ """H" """

Personifying Classes

(i.e. Mosquito, Locust)
Figure 2: Anatomy of the F'11er personality

Requirement #1 basically makes personalities uninstantiable on their own. The rationale is that a
personality cannot possibly provide a “default” implementation. We are aiming at encapsulating behavior
that might be reused by a number of distinct classes. Therefore, the “default” versions for the downstream
interface methods might vary greatly in different contexts and thus a common implementation does not
make sense.

Page 4 of 9 4



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

It is also important for the semantics of these functions to be clearly understood and defined. These
functions are the weak link with regards to the semantic integrity of the entire system, since they are the
ones implemented by the personifying objects. It is thus essential for them to be easily understood by the
programmer.

For instance, a downstream interface that is ambiguously defined with respect to its return value format,
such as:

// compute and return today’s date

String Today();
would not be of much help to the developer personifying this personality, since it provides no clue about
the format the answer must be in. Checking that the personality does not implement the downstream
interface functions is simple. Automatically making sure the semantics of those functions are clear, on the
other hand, is still an open problem.

A compiler can easily check requirement #2, which ensures an attainable minimum set of pre-required
knowledge in order for any given object to personify a given personality. We restrict personalities from
making the parameters and return values of the downstream interface methods user-defined types, since this
will imply that the personality would forever need to be deployed with an implementation for the user-
defined types it uses. We require restricting these signatures to the lowest common denominator for the
given programming language. For instance, this rule hinders the programmer of a personality from the
following declaration in the downstream interface:

MyDateClass Today(); // return today

This declaration couples the personality with the user-defined type MyDateClass and damages its
reusability. Using Java’s “standard” Date class, the following would be preferable.

// return Java’s Date for Today
Date Today () ;

Requirement #3 attempts to make personalities the clear boundary between the clients of the personality
(i.e. the upstream objects) and the personifying classes (i.e. the downstream objects). This aims at
providing a specific layer of design reuse at the personality level. In other words, by restricting the clients
to only use the popular behaviors provided by the personality, we are guaranteeing the semantics of the
personality. Once again, the compiler can easily enforce this requirement.

For example, a class that needs to interact with a Swimmer can only call Swim(int miles, int depth)
and not any of the other functions (i.e. Submerge (), MoveFin (), etc). The di keyword in the
personality’s definition is aimed at helping the compiler and the user of the personality to clearly discern
what is allowed and what is not. In the following sample code, both correct and incorrect use of a
personality’s interface are illustrated:

// SeaWorldShow () is a client of Swimmer pers.
void SeaWorldShow (Swimmer shamuorflipper) {

shamuorflipper.Swim(10,10); // ok, ui used
shamuorflipper.Submerge(); // error, di used

}

Simply creating a popular “wrapper” for each downstream function can circumvent requirement #3.
Therefore, requirement #4 calls for substantial semantic difference between the upstream and downstream
functions in order to avoid what we’ve termed “delegation syndrome”. For instance, a roundabout way to
get access to the Submerge () function would be to redefine the Swimmer personality and add to it the
following:

Personality Swimmer {

public void ProxySubmerge () { Submerge(); }
}
Checking for violations to this rule, however, is far from trivial and we cannot expect current compilers to
enforce it.

Page 5 of 9 5



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

Requirement #5 aims at making sure that the personifying classes do not change the originally intended
semantics for the personality. In other words, if we would allow a LazyMosquito class to do something
like:

Class LazyMosquito extends Insect
personifies Flier
{
..implementation of downstream interface
// we shouldn’t redefine Fly(...)!
public void Fly(int miles, int altitude) {
Takeoff ();
for(int a = 0; a < altitude/2; a++) Ascend();
while (miles--) Flap();
for(int a = altitude; a > 0; a++) Descend();
Land() ;
}
}

the semantic integrity of the system would be compromised, since this special mosquito only flies at about
half the altitude as what the personality promises it would. Furthermore, since this particular
implementation of F1y (.. .) contains a logic error, its effects are undefined. Therefore, the compiler
should make sure that personifying classes implement the downstream interface and nothing more.

Finally, requirement #6 makes personalities follow their own advice by requiring that all communication
with the personifying class be restricted to the functions defined in the downstream interface. This aims at
making sure that the set of functions is enough to support the semantics of the personality, and trigger the
discovery of new ones if not. It also forces personalities and personifying classes to have only one meet
point, namely the downstream functions. The same argument regarding the communication between clients
and personalities set forth in requirement #3 is valid regarding the implementation of the personality’s
high-level behavior themselves. For example, allowing

personality Flier {

void Fly(int miles, int altitude) {
JumpInTheAirAndStartFlapping(); // not in
// downstream interface !

}

might restrict the applicability of this personality only to Mosquito and its subclasses (this is assuming, of
course, that the proper method visibility allows this code to be accepted by the compiler in the first place!).

Related Work

One category of related works includes approaches that are based on using delegation to emulate modeling
roles an object may play during its life, such as the work by LaLonde et al. on Exemplar-Based Smalltalk
[9] and the work by Gottlob et al. on extending object-oriented systems with roles [5]. Both approaches
support two kinds of hierarchies: class and role hierarchies (called exemplars in [9]). The main focus of
these works is, however, on supporting dynamic modifications of an object’s behavior, as it
undertakes/cancels certain roles and not on explicitly supporting functional decomposition. Artifacts that
model roles, or exemplars, are strongly bound to a certain class in the inheritance hierarchy. As a result, it
is not possible to apply the same behavior to different unrelated classes, as it is the case with, e.g., the
Walker Personality being applicable to both Ants and Cows. Again, because of the focus on supporting
evolving objects, there are no equivalent notions to the upstream and downstream interfaces of the
Personalities.

On the other side, there are several works aimed at improving the expressiveness of the inheritance
structure by relaxing the class-subclass relationships that could also support modeling stand-alone behavior
that can be reused in several scenarios. This category includes the work on mixin-based inheritance [1,2],
contracts [7], mixin-methods [12], MixedJava [3], Rondo [14], and context relationship [15]. These works
share the fact that variations on a base behavior are modeled in stand alone artifacts called mixins in [1,2]
and [3], contracts in [7], mixin-methods in [12], adjustments in [14], and context objects in [15]. These

Page 6 of 9 6



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

artifacts do not commit to any base behavior when defined. Rather, they refer to the base behavior by
means of an (unbound) super parameter and the self reference. The individual approaches differ from each
other on two main points: (1) the level at which the variation is specified — object vs. class level, and, (2)
the time when variations can be applied — dynamically vs. statically.

From the perspective of this paper, the important point is that the variations are not coupled to a static
inheritance hierarchy as with standard inheritance. One could use mixins to model high-level reusable
functions, since classes and mixins can be freely arranged in inheritance chains. However, these approaches
are lower-level with regard to modeling high-level popular functions as compared to Personalities. None of
them provides for guaranteed semantics of the popular behaviors and for declaring the interface expected
from the personifying classes. However, they provide more flexible behavior composition that could be
used to implement Personalities instead of using delegation. In particular, Rondo and the context
relationship approaches could be used in our future work on dynamic Personalities.

The work presented in [8] also considers the need for synthesizing object-oriented and functional
decompositions. The visitor pattern [4] is considered as a technique for filling the gap. The visitor pattern
could be used in our running example, as follows. First, each popular behavior will be modeled in a
separate visitor class, with the individual visitor classes all being subclasses of an abstract Visitor class.
The implementation of the popular behavior would be encoded in visit () messages. All animals must
understand an accept () message taking a visitor object as a parameter. When the accept () message is
invoked on an animal object with a visitor as a parameter, the animal object will invoke visit () to the
visitor parameter, passing itself along the invocation. Thus a client wanting to invoke a popular function on
a certain animal would create an instance of the visitor class for this popular function and call accept ()
on the animal with the visitor as a parameter.

There is a severe problem with this approach related to the fact that visitors are normal classes and thus do
not have any notion of the downstream interface. Each visitor needs to somehow declare to which types its
popular behavior applies. It can not simply accept an object of the most general type Animal as the
parameter of its visit method, since the compiler in a strongly typed language like Java would complain
when “downstream® functions are applied to this object within the micro-framework of the popular
function. In absence of a real downstream interface, each concrete visitor class would implement as many
different visit () messages as there are concrete animal classes to which the popular behavior encoded by
the visitor applies. For instance, there will be a visitor class for the Walker behavior, say WalkerVisitor.
This will have a different visit () methods for Cow, Penguin, Ant and Locust, although the
implementations of these messages are the same — each embodying the same micro-framework of the
upstream message Walk () in the Walker Personality. Not only is this solution awkward, but it also
damages reusability, since popular functions are still strongly coupled to the data hierarchy. Adding new
animal classes (data abstractions) and declaring them to personify an existing personality is impossible
without changing the implementation of the popular functions.

The work on subject-oriented programming [6] aims at enabling the construction of object-oriented
software as a sequence of collaborating applications, each providing its own subjective view of the domain
to be modeled, and defined independently from the others. A subject is a collection of class fragments with
each fragment providing only one subjective view of the “whole* data abstraction captured by the class.
Personalities can serve for modeling these fragments, especially when enhanced with mechanisms for
composing them that would enable to model the composition of fragments into subjects and of individual
subjects into higher-level subjects.

In our own previous work, behavior is described by propagation patterns (in Demeter/C++ [10]) or
adaptive methods (in Demeter/Java [11]), separate from specific classes. This separately specified behavior
is later reused in many different class structures. Propagation patterns (or adaptive methods) are similar in
spirit to personalities, they specify behavior for a family of classes and they both need to be mapped into
specific classes. However, both propagation patterns and adaptive methods don't have the concept of a
required and provided interface and they don't enforce the laws of personalities as described in this paper.

Our concept of upstream and downstream interfaces is very similar in spirit to that of provided and
required interfaces in [13]. However, required interfaces refer to other program modules (i.e. other
interfaces), whereas a personality’s downstream interface refers to a class that is part of the personified

Page 7 of 9 7



OOPSLA 98 Position Paper: Micro-frameworks and Personalities
Workshop #12 Blando, Lieberherr, Mezini

object itself. Furthermore, the different functions in the required set can be serviced from different modules
in a system, whereas only one class must implement the entire downstream interface. We have purposely
kept a different nomenclature to emphasize the fact that [13] aims at defining an architecture whereas
personalities work at a much smaller (class) granularity.

Our take on the Workshop’s Posted Questions

In this section we will give our views on how personalities might help answer some of the questions
identified by this workshop.

When a framework provides an “approximate” fit to an application domain, how
can a user expect to modify or extend the framework?

Whereas frameworks have system-wide granularity, personalities are defined at a class or role level. Their
granularity, therefore, is much smaller. Thus, the problem of “appropriate fit” is less severe or frequent.
When the problem presents itself, however, personalities could be extended in a manner similar to class’
inheritance, with behavior overriding. We are currently investigating what the best approach for
introducing extensibility would be.

How can a framework support product evolution as the fundamental application
domain changes?

Personalities are built on the idea of separating behavior from the class hierarchy. Currently, the
“application domain” normally gets “embedded” in the class hierarchy. Personalities’ main advantage is
that they provide some degree of freedom for the behavior to be lifted from an “old” application domain to
a “new” application domain. That is, chances are the behavior/role (which the personality models and
encapsulates) would still be valid. As expected, however, the downstream interface implementation will
need to be redone.

What types of problems arise when multiple frameworks must be integrated?
How do we go about structuring frameworks to ease the difficulty of integration?
Personalities can be used alongside other personalities very easily. Their meet point is the class, or object,
in an OO system. Since the popular behavior (upstream interface) of the personality is “guaranteed” in
terms of its semantics, other personalities can make use of this behavior, thus making integration simpler.
The relative rigidity of Personalities with respects to their interfaces makes them suitable for composition
too.

In what applications contexts is framework development desirable, or even
practical?

Our position is that role-based design is very desirable in most cases. While we do not maintain that it is the
only approach, we believe that it is the most appropriate for subject-matter expert’s know-how transfer.
Thus, we believe that personalities applicability is very broad, suitable for being folded into mainstream
OOA/D, alongside use-cases, CRCs, and other artifices for design and programming.

What is the relationship between frameworks and COTS?

Currently, there is no support for Personalities on COTS products. However, since the Personalities/J
compiler will output Java code as its target language, numerous Java products could be used for
compilation and debugging.

Page 8 of 9 8



OOPSLA 98 Position Paper: Micro-frameworks and Personalities

Workshop #12 Blando, Lieberherr, Mezini
References
1. Bracha, Gilad, and Cook, William. Mixin-based Inheritance. In Proceedings of the ACM Conference

10.

11.

12.

13.

14.

15.

on Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA) 1990.

Bracha, Gilad, and Lindstrom, Gary. Modularity meets Inheritance. In Proceedings of IEEE Computer
Society International Conference on Computer Languages (Washington, DC, April 1992), IEEE
Computer Society, pp. 282-290.

Flatt, Matthew, Krishnamurthi, Shriram, and Felleisen, Matthias. Classes and Mixins. To appear in
Proceedings of the 1998 Principles Of Programming Languages (POPL) Conference. January 1998 at
San Diego.

Gamma Erich, Helm Richard, Johnson Ralph, and Vlissides John. Design Patterns. Elements of
Reusable Software. Addison-Wesley, 1994.

Gottlob Georg, Schrefl Michael, and Roeck Brigitte. Extending Object-Oriented Systems with Roles.
In ACM Transactions of Information Systems, Vol. 14, No. 3, July 1996.

Harrison William, and Ossher Harold. Subject-Oriented Programming (A Critique on Pure Objects). In
Proceedings of ACM Annual Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) "93. Sigplan Notices, Vol. 28, No. 10, pp. 411-428, 1993.

Holland, Ian. The Design and Representation of Object-Oriented Components. PhD Thesis.
Northeastern University, 1993.

Krishnamurthi Shiram, Felleisen Mathias, and Friedman Daniel. Synthesizing Object-Oriented and
Functional Design to Promote Reuse. In Proceedings of ECOOP 98, Lecture Notes on Computer
Science, Springer Verlag, 1998.

LaLonde Wilf R., Thomas Dave, and Pugh John. An Exemplar-Based Smalltalk. In Proceedings of
OOPSLA ’86, ACM Sigplan Notices, Vol. 21, No. 11, pp. 322-330.

Lieberherr, Karl. Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns.
PWS Publishing Company, Boston, 1996.

Lieberherr Karl and Orleans Doug. Preventive Program Maintenance in Demeter/Java (Research
Demonstration). In Proceedings of ICSE 1997, pp. 604-605, ACM Press, 1997.

Lucas, Carine, and Steyaert, Patrick. Modular Inheritance of Objects Through Mixin-Methods. In
Proceedings of the 1994 Joint Modular Languages Conference (JMLC). Springer-Verlag, pp. 273-282.

Luckham, David, Vera, James, and Meldal, Sigurd. Three Concepts of System Achitecture. Stanford
University Technical Report, CSL-TR-95-674, July 1995.

Mezini, Mira. Variation-Oriented Programming Beyond Classes and Inheritance. Ph.D. Thesis.
University of Siegen, 1997.

Seiter, Linda, Palsberg, Jeng, and Lieberherr, Karl. Evolution of Object Behavior Using Context
Relations. IEEE Transactions on Software Engineering. Vol. 24, No. 1, January 1998, pp. 79-92.

Page 9 of 9 9



