
Designing and Programming
with Personalities

Luis Blando

Flier
+Fly(){...}

Walker
+Walk(){...}

Pigeon

 +Fly(){...}
+Walk(){...}

����������
������

����
����

������

College of Computer Science

Northeastern University
(Technical report #NU-CCS-98-12)

1998

2

 Copyright 1998

Luis Blando

3

Designing and Programming with Personalities

by

Luis Blando

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

Northeastern University

1998

 ___________________ _________________
Supervisory Committee: Karl Lieberherr Mira Mezini

 Date: December 2nd, 1998.__________________________________

4

Northeastern University

Abstract

DESIGNING AND PROGRAMMING WITH PERSONALITIES

by Luis Blando

Decoupling behavior modeling from a specific inheritance hierarchy is one of the challenges

for object-oriented software engineering. The goal is to encapsulate behavior on its own, and

yet be able to freely apply it to a given class structure. We claim that standard object-oriented

languages do not directly address this problem and propose the concept of Personalities as a

design and programming artifice to model stand alone behavior that embodies what we have

termed micro-framework style of programming. Allowing behavior to stand alone enables its

reuse in different places in an inheritance hierarchy. The micro-framework style helps to

preserve the semantics during reuse. Furthermore, we show how Personalities can help solve

the problem of object migration and how they can easily integrate with frameworks. We present

two different Personalities implementations by extending the Java Programming Language.

5

TABLE OF CONTENTS

List of Figures ...8

List of Code Samples ...9

THE DIFFICULT TASK OF MODELING BEHAVIOR.. 11

The Functional Nature of Software Systems.. 11

Finding Objects and Behavior .. 13

When Behavior Misbehaves.. 15

Roles and the Application Domain Functions .. 15

The Problem of Mapping Application Domain Functions to the Class Hierarchy... 16

Issues in Modeling Popular Functions .. 17

Pelicans, Whales, and The Virtual Zoo: A Running Example 17

Alternatives for Mapping Popular Functions .. 20

MODELING WITH PERSONALITIES .. 24

Analysis and Design With Roles... 24

What are Personalities? .. 25

Syntax and Usage ... 26

The Law of Personalities... 31

No Default Implementation Rule (the need for some class).................................. 32

Basic Types Rule (KISS) .. 32

Behavioral Buffer Rule (gotta do something, after all) .. 33

Fixed Popular Behavior Rule (don’t go second-guessing me)................................ 34

Implementation Separation Rule (to each its own).. 34

The Rule That Almost Made It... 35

DYNAMIC PERSONALITIES ... 36

Why Do We Even Care About This? .. 36

What’s Wrong with Personalities “As-Is”... 38

Where Static Personalities Have It Right ... 38

Where Static Personalities Fall Short .. 38

6

Dynamic Personalities.. 39

What We Are Trying To Achieve.. 40

Indecisive Personalities. (Not Fully Dynamic, But Good Enough) 41

Fully Dynamic Personalities (The Wonders of Simplifying) ... 42

Method Dispatch in Dynamic Personalities.. 42

Class’ Conformance to a Personality’s DI... 44

PERSONALITIES/J.. 46

A Few Words About the Programming Environment ... 46

Implementing Static Personalities .. 46

Java and Interfaces... 46

The Mapping Process.. 47

Using a Class that Personifies.. 47

Mapping to Java... 49

The Changes for Dynamic Personalities ... 55

Personalities’ Protocol... 57

Client Code Changes ... 57

The Generated Java Code... 58

PERSONALITIES AND THEIR BIG COUSINS .. 62

Frameworks and Personalities .. 62

Adapting a Framework using Hotspots.. 62

Personalities as Hotspots .. 65

Personalities as Traffic Cops .. 66

Composing Frameworks using Personalities .. 69

Delegating Composition to the Application’s Code .. 71

Other Collaboration-Based Work .. 73

FUTURE WORK ... 75

Performance Ranges or Guarantees... 75

Mapping and Parameter Conversion ... 75

Inheritance of Personalities ... 78

7

Composition of Personalities .. 80

WHERE HAVE WE SEEN THIS BEFORE? ... 82

Using Delegation .. 82

Relaxing Inheritance... 82

The Visitor Pattern ... 83

Subject-Oriented Programming.. 84

Adaptive Programming.. 85

The RAPIDE Connection... 85

CONCLUDING REMARKS... 86

What We Said We Were Going To Say... 86

What We Actually Said... 86

What Good It Did Us .. 87

Bibliography ... 88

APPENDIX A – A COMPLETE EXAMPLE.. 92

The Static Version .. 92

The .pj Files for the Animal Hierarchy ... 92

The Personality Files ... 93

The Client using Static Personalities ... 94

The Generated Java Code... 95

Animal Hierarchy .. 95

Personalities ... 97

Client Code .. 98

The Dynamic Version .. 99

The Client using Dynamic Personalities... 99

The Generated Java Code... 101

Animal Hierarchy .. 101

Personalities ... 103

Client Code .. 105

8

LIST OF FIGURES

Number Page
Figure 1: Zoo class hierarchy ... 18

Figure 2: Popular behavior decomposition.. 19

Figure 3: Popular behavior using multiple inheritance .. 22

Figure 4: Relationship between client, personality, and personifying classes 26

Figure 5: A prototype and an example of a personality ... 28

Figure 6: The Zoo class diagram using personalities.. 30

Figure 7: Person, Employee, Manager hierarchy .. 36

Figure 8: Generated Java Files ... 49

Figure 9: Generated Java System’s Relationships ... 51

Figure 10: Creation of objects and their associated $Ego classes ... 54

Figure 11: Using an upstream interface method ... 56

Figure 12: Dynamic Personalities’ common protocol.. 57

Figure 13: Subclassing hotspots in framework instantiation... 64

Figure 14: Delegation and object identity .. 65

Figure 15: ShowFramework with Flier as hotspot .. 66

Figure 16: TakeoffAndLandFramework with LandGear as hotspot 67

Figure 17: PlaneApp, the original application... 68

Figure 18: Composing two frameworks intrusively.. 70

Figure 19: The plane application using the composed framework .. 71

Figure 20: The Plane Application using two side-by-side frameworks...................................... 72

Figure 21: Inheritance of Personalities w.r.t. abstraction and granularity 79

9

LIST OF CODE SAMPLES

Number Page

Code Sample 1: Definition of the Flier personality .. 28

Code Sample 2: A Bat class that personifies a Flier.. 29

Code Sample 3: A LazyPelican redefining what it shouldn’t ... 34

Code Sample 4: A client using an object that personifies Flier ... 47

Code Sample 5: Knowing and Unknowing clients ... 48

Code Sample 6: SeaLion.java... 52

Code Sample 7: Swimmer$Ego.java.. 52

Code Sample 8: Pseudo code for generating the $Ego classes.. 53

Code Sample 9: The Java interface Swimmer.java.. 53

Code Sample 10: Pseudo code for generating the Java interface file... 54

Code Sample 11: Pseudo-code for creating the Java class files .. 55

Code Sample 12: A dynamic client ... 58

Code Sample 13: Adding Shrink at the correct place in the inheritance chain.................... 59

Code Sample 14: Generating Java class files (dynamic version)... 60

Code Sample 15: Generating $Ego files for the dynamic case.. 61

Code Sample 16: SpaceShuttle class ... 76

Code Sample 17: SpaceShuttle class with name-mapped personification..................... 76

Code Sample 18: Two SEBSD personalities ... 77

Code Sample 19: Personifying two SEBSD personalities without parameter conversion 78

Code Sample 20: Personifying two SEBSD personalities with parameter conversion 78

Code Sample 21: MechanicFlier extends Flier... 79

10

ACKNOWLEDGMENTS

I would like to thank Karl Lieberherr and Mira Mezini for their help and support of this

work. Thanks to Tony Confrey and Johan Ovlinger for their review of early versions of this

work. I am grateful to GTE Laboratories for their sponsorship of my studies. Most

importantly, I would like to thank Laura for her unconditional support.

11

Chapter 1

THE DIFFICULT TASK OF MODELING BEHAVIOR

This thesis aims to present an alternative way of modeling behavior in software, using as

much as possible of the current technology. It is important, therefore, to understand the

nature of a software system, the process by which systems come into being, and the complex

task of modeling application-domain behavior in software.

THE FUNCTIONAL NATURE OF SOFTWARE SYSTEMS

At a very high level, a software system is deployed to perform a function for its owner. When

feasibility studies are conducted on whether to develop a new system or not, owners are

concerned with the new functionality or capabilities a system will have. The “black-box”

metaphor has its roots in the inherent functional nature of software systems: “given input x,

it will produce output f(x)”. In the words of Bertrand Meyer, “a well-organized software system

may be viewed as an operational model of some aspect of the world. Operational because it is used to generate

practical results and sometimes to feed these results back into the world; model because any useful system must

be based on a certain interpretation of some world phenomenon.” [Meyer88, pp. 51]

Furthermore, the functional view of the system can be decomposed into a function

hierarchy. Bigger-scope functions are made up of smaller-scope ones. The result is a functional

decomposition of the application domain, which represents a kind of containment hierarchy in

the sense that in order to fulfill a bigger scope function, you must “have” (i.e. execute) its

smaller-scope functions. However, this is containment of relationships (i.e. links), and not of

the functions themselves, as it is quite possible for several bigger-scope functions to depend

on the same smaller-scope function to perform a certain task generic to the entire system

(i.e. login()).

12

Following this strict functional decomposition fueled the structured programming approach to

software development. Structured programming implies decomposing the functionality of

the application into several smaller functions, each with clear interfaces. The flow of control

is kept by a “privileged” function (i.e. main()) who yields to sub-functions as necessary.

Since functionality was encapsulated, it was easy to see “what the program was attempting to

do”.

Unfortunately, focusing exclusively on the functional structure of the system has its

disadvantages. The main problem is that the data over which all the functions operate are

spread throughout the entire system. Partially because of the programming languages’

requirements with respect to visibility, many times specific data items needed to be

duplicated in different parts of a system, breaking data encapsulation. The alternative to data

duplication was giving all the data elements global visibility, with the accompanying

reduction of the global namespace, as well as the scalability and concurrency problems it

entails. Furthermore, in both approaches it was not possible to guarantee the integrity of the

data elements. Since many different functions were allowed to manipulate the data, different

functions might change the data without abiding by the same intended semantics.

Object-oriented programming grew to address these problems. According to the object-

oriented programming paradigm, data elements that belong together are collected in newly

created abstractions, called classes. Access to a class’ data members is closely guarded by the

class itself, thus providing a mechanism for preserving data integrity through the use of

accessor methods. Classes can themselves be ordered in a hierarchy, creating what is usually

called the class hierarchy or inheritance tree. The relationship between classes in a class hierarchy

is of the “IS-A” kind, and does not imply containment.

Viewed from the leaves up however, an inheritance tree does imply containment of data

members. As a matter of fact, inheritance grew out of the need for providing incremental

extension of data abstractions. Therefore, a class that extends a super-class contains all the

data members of the super-class plus its own. Inheritance trees are, therefore, specially

appropriate to represent relationships between real-world objects. From examining the real

13

world, it is apparent that the characteristics (i.e. data attributes) of many pairs of objects that

would fulfill the “is-a” relationship can be strictly ordered via a superset relationship. For

instance, an oversimplified version of an Automobile could contain the make, model,

year, and motor-hp attributes, while a Truck that extends Automobile has all these

attributes plus maybe load-capacity and traction, which are specific to trucks.

The same is not true, however, for the member functions in a class hierarchy. While

inheriting classes must carry along all the data members of their super-class, they are in some

cases allowed to override the member functions and thus might conceivably change their

semantics.

FINDING OBJECTS AND BEHAVIOR

Object-oriented programming has been well received by the software engineering

community at large, and is currently being used by virtually every large software development

effort. The first thing that comes to mind when designing an object-oriented system is,

naturally enough, finding the objects. In spite of Meyer’s assertion, “This is why object-oriented

designers usually do not spend their time in academic discussions of methods to find the objects: in the physical

or abstract reality being modeled, the objects are just there for the picking!” [Meyer88, pp. 51], a number

of object-oriented analysis and design methodologies have tried to help developers do just

that, identify and populate the objects.

This thesis is more concerned, however, on the contents of these classes. Namely, the

member functions (and the semantics) each of them will have, and how they get assigned to

a particular class. As indicated in what follows, it is generally recognized that after initial

analysis of the application domain, a software developer is left with two hierarchies: the data

hierarchy and the function hierarchy. How these two sets get melded together to form

classes is at the heart of the problem of modeling behavior with current object-oriented

programming languages.

14

In the view of Rebecca Wirfs-Brock et. al. [Wirfs90], initial exploration yields a list of classes

within the application, a description of the knowledge and operations for which each class is

responsible, and a description of the collaboration between classes. Classes are loosely

defined as “objects that share the same behavior”. However, the steps proposed for

identifying classes in the system are oriented towards following the data decomposition

hierarchy. Furthermore, responsibilities are assigned to objects very early-on: “What actions

must get accomplished, and which object will accomplish them, are questions that we must answer right at

the start” [Wirfs90, pp. 32]

Grady Booch’s method [Booch94] suggests first identifying a data dictionary and then

concentrating on the “semantics” of classes and objects, their behavior. The data dictionary

or class hierarchy is arrived at by a number of different paths. Booch suggests not only

looking at noun-phrases in the requirements specifications, but also, as in [Wirfs90],

encourages making roles, responsibilities, events, and other abstractions also part of the data

dictionary, using CRC cards [Bellin97] as the “catalyst for the brainstorming process” [Booch94,

pp.237].

In Object-Oriented Software Engineering [Jacobson92], Ivar Jacobson and his colleagues

follow their own “use-case based approach”. They propose roughly the same sequence of

discovery as the other methods; finding the class hierarchy first and determining the

operations on the objects later. In their own words, “The object’s operations come naturally when we

consider and object’s interface. The operations can also be identified directly from the application, when we

consider what can be done with the items we model.” [Jacobson92, pp. 79].

The work of James Rumbaugh et. al. [Rumbaugh91] states very clearly that operations and,

specially, roles, should not be made into classes: “The name of a class should reflect its intrinsic

nature and not a role that it plays in an association” [Rumbaugh91, pp. 155]. They also first

concentrate on building the class hierarchy from the nouns in the requirements specification.

It is important to note that all these methods do state, very clearly, that the classes should

encapsulate normal behavior for the object they attempt to model. Normal behavior is similar

15

to what [Harrison93] calls intrinsic behavior. We agree with their view as far as the object data

members are concerned, as well as their related behaviors (get() and set() operations,

for instance). However, we believe that there’s no singular application domain behavior that

can be considered unique and different from any other (e.g. photosynthesis in [Harrison93]).

Rather, the class hierarchy designer has a particular application domain she is targeting and

thus her particular view at the time becomes the object’s intrinsic (application domain)

behavior.

In practice, however, the object-oriented methods all correctly suggest a bias towards

representing the real world in the class hierarchy. The intrinsic properties [Harrison93] are

somewhat view-independent and thus they provide a good foundation on which to begin

modeling. This means that software developers tend to closely follow the data

decomposition of the application domain in their class hierarchy. In our experience, the rule

of thumb “when in doubt, follow the data” is widely acknowledged by industry’s software

developers.

WHEN BEHAVIOR MISBEHAVES

Unfortunately, while decomposing an application domain into a clear hierarchy of data

abstractions is relatively straightforward, giving each of those data abstractions their

application-based behavior is not.

ROLES AND THE APPLICATION DOMAIN FUNCTIONS

Once the data decomposition part of the analysis is finished, we are left with a number of

functions that we need to assign to the class hierarchy. In this context, these functions are

not the low-level, basic functions that are easily attached to every data abstraction (i.e.

accessor methods, constructors, etc.) but rather part of domain-based behaviors, such as

roles and responsibilities (i.e. “owner”, “employee”, and “service representative”). These

high-level functions are usually clustered together into what has been called a “role”. For

16

example, an Employee role offers the application domain functions JoinUnion(), and

Quit().

In our experience, domain experts usually speak in terms of these high-level functions and

roles when describing the system. Some object-oriented methods, such as [Andersen92] and

[Wirfs90], are more conducive to the discovery of roles than others. Application domain

roles can usually be found when inspecting the dynamic and operational views of your

system, such as use-cases in [Jacobson92], object interaction diagrams in [Booch94], and

event traces in [Rumbaugh91]. These high-level functions can also arise from the need to

encapsulate commonality after a detailed analysis of the behavior of a group of data

abstractions, as the example in the next section will demonstrate.

THE PROBLEM OF MAPPING APPLICATION DOMAIN FUNCTIONS TO THE CLASS HIERARCHY

The mapping from the application functional domain onto the data decomposition domain

is not one-to-one or many-to-one (which is easy), but rather one-to-many or many-to-many.

In other words, there are application domain functions that might be required by more than

one application domain data abstraction. In this thesis, we will call these functions popular.

The standard solution to this problem is to select one of the potential classes and assign the

popular function to it, while using associations between the other potential classes and the

one implementing the popular function. This approach works fine as long as the classes

involved are naturally related in the application domain, but breaks down when the

association needs to be added specifically to reuse the implementation of the popular

function. Adding a spurious association, not supported by the problem domain, increases

the coupling of the system and hinders its reusability by incrementing the dependencies

among its components. An alternative approach to using an association is simply duplicating

the function implementation. This is, in its own right, undesirable from a correctness and

maintenance perspective. Duplicating the function implementation means that changes to

the function need to be propagated to all the classes that host an implementation of it. It

17

also reduces the robustness of the system, since now there are more places where an error

can wreak havoc in the semantics of the whole system.

ISSUES IN MODELING POPULAR FUNCTIONS

How then, are popular functions modeled in current programming languages? To motivate

this section, we will use an example. Our application domain has to do with building a

software system for an animal theme park.

PELICANS, WHALES, AND THE VIRTUAL ZOO: A RUNNING EXAMPLE

Studying the different requirements from the distinct groups of users in the system, the

software developer arrives at the object model for the animals in the theme park. Since the

primary goal of the system is to maintain the well being of the zoo’s animals, the software

architect uses the veterinary group members as the domain experts. Applying any one of the

more popular OOA/D methodologies, such as [Booch94], [Jacobson92], [Meyer88],

[Rumbaugh91], or [Wirfs90] will likely yield a class hierarchy that follows the classical model

[OMG92], or the intrinsic properties of the data. The class hierarchy arrived at is shown in

Figure 1.

The hierarchy in Figure 1 will support the intrinsic properties’ behavior (i.e. get(), set(),

etc) and the application-domain behavior required by the veterinary group. Thus, functions

like LayEggs() and Nurse(), which help support a “reproductive behavior”, can be

correctly assigned to specific classes, as shown in the class diagram.

The veterinary group will most likely not be the only user of the system. Furthermore, each

user of the system has her own view about the class hierarchy. Whereas the veterinary needs

to classify the animals based on their reproductive system, the inventory representative must

make sure that every animal has its own code. The public relations representative, on the

other hand, is terribly concerned with the fact that each animal must have its own friendly

name. The trainers would like to classify the animals according to their capabilities, whereas

18

the feeders only care about an animal’s diet, and so on. Subject-Oriented Programming, as

originally proposed by Harrison and Ossher [Harrison93] explores this problem in detail.

Figure 1: Zoo class hierarchy

Each of the different users of the system will require a potentially different application-

domain behavior. This translates to a different set of popular functions for each. Mapping

these onto the class hierarchy shown in Figure 1 will prove difficult at best. For the sake of

clarity, we will consider in detail the needs of the trainers. Specifically, the task of building a

virtual animal show for the theme park to be used for advertising purposes. After consulting

with the domain experts, we might have a requirement statement that looks like:

“The show shall start with the pink pelicans and the African geese flying across the

stage. They are to land at one end of the arena and then walk towards a small door

on the side. At the same time, a killer whale should swim in circles and jump just as

the pelicans fly by. After the jump, the sea lion should swim past the whale, jump

19

out of the pool, and walk towards the center stage where the announcer is waiting

for him.”

Upon an initial analysis of the requirements, we realize that most animals perform some

basic functions in the same manner. That is, there exists a set of popular functions whose

semantics you can model independently based on the semantics of their sub-functions. For

our running example, these popular functions could be Fly(), Swim(), Walk(), and

Jump(). A simple version of the semantics of, for example, the Fly() function could be

fixed using Java as:

// (x,y) is the target landing spot
void Fly(int x, int y, int altitude) {
 resetMetersFlown();
 Takeoff();
 for (int a=0; a < altitude; a++) Ascend();
 while(!ThereYet(x, y)) FlapTowards(x, y);
 for(int a=altitude; a > 0; a--) Descend();
 Land();
}

Similar definitions could be made for the rest of the popular functions, making use of their

respective sub-functions, as shown in Figure 2.

Takeoff
Ascend
ThereYet
FlapTowards
Descend
Land

JumpInTheWater
Submerge
MoveFin

Rise
JumpOutOfTheWater

Prepare
MoveFoot
Stabilize
AtEase

Fly

Swim

Walk

CheckDistance
SprintTo
LiftOff

Land

Jump

Figure 2: Popular behavior decomposition

20

While the software developers can, and should in the author’s opinion, model these popular

functions isolated from the data hierarchy, relying solely in their sub-functions, there is no

easy way for mapping them onto the class hierarchy for the system, shown in Figure 1. The

difficulty stems from two facts:

(a) More than one class need to provide the same function, with identical semantics

(b) The set of classes from (a) does not conform to the data decomposition, and

ultimately, the class hierarchy of the system.

If we wanted to model the “reproductive behavior”, on the other hand, we would be able to

easily allocate its functions in the hierarchy, since it follows (somewhat) a reproductive

classification. For example, the Nurse() function of the reproductive behavior can be

correctly assigned to the Mammal class, since nursing is an intrinsic behavior of the “real-

life” object the Mammal class attempts to model. Similarly, LayEggs() could be assigned to

the Oviparous class without problems.

ALTERNATIVES FOR MAPPING POPULAR FUNCTIONS

The problem of mapping these behaviors to a class hierarchy is not new. As a matter of fact,

it arises in all but the most trivial systems, as there are many stakeholders (i.e. clients) of the

system, each with their own view. Unfortunately, none of the common solutions are

satisfactory.

Pushing all the popular functions (i.e. Fly(), Swim(), Walk(), and Jump()) up the

inheritance hierarchy is one common response to this problem. It helps in that subclasses

will share a single implementation of the function, a goal we want to achieve. However, even

in our simple example we find that in order to have a single implementation of the popular

functions we need to map them at the root of the hierarchy (i.e. Animal class). For

example, we can’t assign Walk() to the Oviparous class, since SeaLion also needs that

function. Besides, this approach is undesirable from a design perspective, as not all classes

21

perform all functions. For example, bringing Fly() just one step up to the Oviparous

class immediately introduces a design mistake, since a Crocodile clearly does not fly.

Another alternative to moving the popular functions’ implementation up the inheritance

hierarchy is to simply duplicate these implementations wherever needed. This approach is

clean from a design perspective, as the popular functions are allocated exactly where needed,

but it is severely flawed from an engineering perspective. The duplication of code implies

ever increasing maintenance costs whenever a change is required. More importantly,

preserving a single semantics for the popular function becomes a daunting task, since the

developer must make sure that she changes every single implementation of the function that

is being worked on. It is analogous to the treatment data objects enjoyed in the early days of

structured programming.

Even if you could somehow manage to have just a single implementation of each of the

popular functions, your problems would be only halfway over. Each individual class still

needs to advertise which ones of the popular functions they support. This is essential in

strongly typed languages to enable the compiler to type check the client’s source code that

calls the popular function. For example, a compiler must know that Whale supports

Swim() and Jump(), but not Fly() or Walk(), whereas SeaLion does support

Walk().

The concept of interfaces [Arnold97], as understood by the Java programming language, helps

solve this last problem, but does not help with the others. Interfaces allow a class to

advertise its compliance with arbitrary sets of method signatures. Interfaces, however, only

contain method signatures, and no implementation. Thus, even if we could “advertise” the

popular functions using interfaces, we would still need an implementation for each class that

implements the interface, with the drawbacks that have already been mentioned. There is,

however, a subtle additional problem with interfaces. To the clients of the system (i.e. the

trainer or feeder objects), the fact that there is a single interface for a given popular behavior

might convey the erroneous impression of fixed semantics, and thus relax explicit

programmer checks or assertions.

22

Figure 3: Popular behavior using multiple inheritance

Another approach to this modeling problem would be to turn the popular behaviors into

classes and use multiple-inheritance to compose them with the data class hierarchy. The

classes ThingThatSwims, ThingThatWalks, ThingThatFlies, and

ThingThatJumps are created and linked to the data hierarchy as shown in Figure 3.

This alternative, while the closest in spirit to our goals, has a number of implications. First,

the semantics of multiple-inheritance have traditionally been ambiguous and are not widely

understood. Second, not all programming languages support multiple-inheritance.

Specifically, Java does not. Third, and most important in our opinion, is the fact that the

classes that embody the behaviors (i.e. ThingThatFlies, ThingThatSwims,

ThingThatJumps, and ThingThatWalks) do not have any constraints in the

23

implementation of their respective popular functions (i.e. Fly(), Swim()). The multiple-

inheritance solution is based on programming with artifacts that are not part of the problem

domain. For instance, there is no concept of an ThingThatFlies object in the

application domain. Flying is merely a behavior that can be performed by several

abstractions in the application domain. We are artificially creating new classes out of the

need to turn behavior into first-class objects.

24

Chapter 2

MODELING WITH PERSONALITIES

In this chapter we present our first solution for flexibly modeling popular behavior by

introducing Personalities. We first present how to do analysis and design with roles, later

introduce the foundations of the Personalities idea by describing a simpler version that is

static in nature but is useful to understand the concepts.

ANALYSIS AND DESIGN WITH ROLES

As has been mentioned before, there are several analysis and design methodologies that are

conducive to the identification of roles in a software system. These are not, however, the

only way that roles can be identified, as our running example shows.

A superficial examination of the requirements statement would not yield the different roles.

A closer inspection, however, will start to show commonalties in the functions the different

objects play. It is the job of the software designer, in our opinion, to pro-actively search for

this commonality and extract the role descriptions in that way. The requirement statement

has been purposely prepared to “hide” roles in order to demonstrate that even in this

apparently adverse case, roles are easily found. Consider if not the following alternative

representation of the same requirements.

“The show shall start with every flying animal in our zoo flying across the stage.

They are to land at one end of the arena and then walk towards a small door on the

side. At the same time, a killer whale should swim in circles and jump just as the

birds fly by. After the jump, the sea lion should swim past the whale, jump out of

the pool, and walk towards the center stage where the announcer is waiting for

him.”

25

In the above representation, it is clear that the show is concerned with “flying things” as a

generic behavior it expects from a subset of the Zoo’s animals. It is important to note,

however, that the same cannot be said for the part of the show that involves the whale and

the sea lion, since in this case the show requires those specific instances to expose a given

behavior. The software designer’s job, however, is to be able to discern that both whales and

sea lions (and many swimming animals) swim in a similar way, and thus be able to abstract

that behavior out as a role.

The software designer can detect commonality in behavior by inspecting the different

abstractions in the (evolving) system and studying how they react to similar stimuli. It is

important to free yourself from the constraints of the class hierarchy at this point and look

for similarities in any set of classes, even if not directly related via a common ancestor. As we

have seen before, the role classification hierarchy does not necessarily conform to the class

hierarchy.

WHAT ARE PERSONALITIES?

This thesis proposes a new concept, the personality, to encapsulate a role-specific behavior.

The idea behind personalities is being able to design a set of popular functions in isolation

from the class hierarchy that will eventually play the role the popular functions belong to.

In concept, a personality is a kind of micro-framework since its popular functions encapsulate

the logic and control flow necessary for fulfilling the behavior, but depend on the

implementation of certain sub-functions by the class that plays the role, or personifies the

personality. This is analogous to the case of frameworks [Johnson97] where a set of

cooperating classes encapsulate an entire application’s flow of control, relying on the

definition of specific subclasses for customization.

From a programming language perspective, personalities are similar to abstract classes in the

sense that they are also under-defined abstractions. The intent of both, however, is different.

While abstract classes tend to be everything to everybody, personalities specifically target the

26

modeling of one (and only one) role. Furthermore, personalities impose a set of constraints

both on their own definition as well as on the clients that use them to provide a greater

degree of semantic guarantees than abstract classes do.

From the perspective of the clients of the personalities, they look more like Java interfaces

[Arnold97], since personalities “export” the set of popular functions that correspond to a

given role behavior. However, personalities are not identical to interfaces for two main

reasons. First, they are conceptually more narrowly defined than interfaces. Second, they

contain implementation, whereas interfaces do not.

Figure 4: Relationship between client, personality, and personifying classes

SYNTAX AND USAGE

From an architectural perspective, a personality acts as a system with two interfaces to

external actors [Jacobson92]. Being an under-defined abstraction, a personality needs to be

personified by a class in order for it to be instantiable. This class is called the personifying class.

On the other end, a personality acts as role-specific interface to the object. The systems that

27

make use of the personality-defined interface are called users or clients of the personality.

Figure 4 depicts this relationship.

Defining a personality is very similar to defining a new class. There are a few added

keywords with easy to remember semantics. A personality definition consists of five parts:

! The upstream interface, made up of all the member functions that clients of this

personality can access (one or more). These encapsulate what we have been calling

“popular” functions. It is here where the personality adds value to the design, since it

provides a single and unique implementation of such behavior.

! The downstream interface, composed of only signatures for functions prepended

by the di keyword. These are the functions that personifying classes must

implement. Clients of the personality cannot access these methods.

! Any private functions that the personality might need to implement the upstream

interface. These functions are not visible to either clients or personifying classes.

! Any role-specific attributes necessary for maintaining some state about the role in

the personality itself.

! A constructor for the personality, used to initialize any personality-defined

attributes.

Code Sample 1 shows the definition of the Flier personality, while Figure 5 shows an

UML representation of a prototypical Personality as well as the Flier personality. New

keywords are underlined in Code Sample 1.

28

// Flier.pj
personality Flier {
 // upstream interface. Must implement here.
 public
 void Fly(int x, int y, int altitude) {
 resetMetersFlown();
 Takeoff();
 for (int a=0; a < altitude; a++) Ascend();
 while(!ThereYet(x, y)) FlapTowards(x, y);
 for(a = altitude; a > 0; a--) Descend();
 Land();
 }
 // downstream interface. Don’t impl here.
 di void Takeoff();
 di void Ascend();
 di boolean ThereYet(int x, int y);
 di void FlapTowards(int x, int y);
 di void Descend();
 di void Land();
 // private functions. Must implement here.
 private void resetMetersFlown() { meters_flown = 0; }
 // attributes (specific to the role)
 private float meters_flown;
 // constructor (optional)
 Flier() { resetMetersFlown(); }
}

Code Sample 1: Definition of the Flier personality

Figure 5: A prototype and an example of a personality

29

A class that wants to personify a given personality needs do the following:

1. Declare its intent via the personifies clause

2. Implement all the functions in the downstream interface.

For illustration purposes, Code Sample 2 shows a trivial definition of a “special” Bat class

that personifies a Flier personality.
// Bat.pj
public class Bat extends Mammal personifies Flier
{
 // intrinsic properties and methods of the Bat class
 boolean in_Dracula_mode;
 void UpdateMode(Time time) {
 if (time > SUNLIGHTOUT) in_Dracula_mode = true;
 else in_Dracula_mode = false;
 }
 Bat() { in_Dracula_mode = false; }
 boolean BiteBeautifulLady(Lady lady) {
 if (in_Dracula_mode) lady.BittenBy(this);
 return in_Dracula_mode;
 }
 // since a Bat flies, use the Flier personality with
 // the following implementations of the DI
 Compass _compass = new Compass();
 void waitUntilInDracula() { // sleep until
 while(!in_Dracula_mode) { // we can go to
 UpdateMode(new Date()); // Dracula mode
 Thread.sleep(5000); // since that’s
 } // when we fly.
 }
 void Takeoff() { waitUntilInDracula(); }
 void Ascend() { /* not shown */ }
 boolean ThereYet(int x, int y) {
 return _compass.where().x() == x &&
 _compass.where().y() == y;
 }
 void FlapTowards(int x, int y) {
 if (_compass.unitialized())
 _compass.set_target(x, y);
 // do whatever I need to move...
 _compass.update_position();
 }
 void Descend() { /* not shown */ }
 void Land() { /* not shown */ }
}

Code Sample 2: A Bat class that personifies a Flier

Figure 6 shows how the Zoo class diagram looks like with the insertion of the personalities.

Notice the similarity of this diagram with Figure 3, which depicts the multiple-inheritance

30

solution. Personalities allow the power of expression of multiple-inheritance without many

of its complications.

Figure 6: The Zoo class diagram using personalities

Personalities are rooted in the idea that popular functions can often be expressed in terms of

smaller-granularity, class-dependant functions. The examples in this thesis, albeit somewhat

simplistic, are geared towards illustrating this idea. The downstream interface is made up of

these sub-functions, which become the link to the personifying class. From our experience in

industry, large-scale framework customization is rather complex to implement, but lower-

level (i.e. class-level) tailoring is many times useful and much more tractable. Personalities

attempt to make this micro-framework implementation easy to model and apply.

31

THE LAW OF PERSONALITIES

As has been explained before, personalities are more than just a convenient way of

expressing multiple-inheritance. They attempt to strengthen the semantic guarantees they

provide to the client classes by conforming to a set of requirements, or rules. Abiding by

certain rules guarantees the developer the reusability and, to some degree, the correctness of

the design. It is partially in these rules where personalities improve over abstract classes. We

consider the following set of requirements for fully exploiting the power of personality

programming. Wherever possible, the personalities compiler needs to make sure that these

are met.

1. “No Default Implementation” Rule: The downstream interface must be a set of

pure abstract functions, with clearly identified semantics.

2. “Basic Types” Rule1: Only basic object types (i.e. string, int, Vector<string>,

etc.) should be passed in parameters and returned from functions in the downstream

interface. A reference to the Personality itself is permitted to allow for self-referential

implementations.

3. “Behavioral Buffer” Rule: Clients of the personality (i.e. the “upstream” objects)

must not use the links to the personifying class (i.e. the downstream interface). These

clients should only access the high-level behavior functions the personality provides.

4. “Fixed Popular Behavior” Rule: The implementation of the popular functions

must be protected against changes by personifying classes.

5. “Implementation Separation” Rule: The implementation of the popular functions

is allowed to use the smaller-granularity functions to communicate with the

personifying class and nothing more.

1 This rule has been demoted to “recommendation” to allow for the componentization of a

set of personalities in an integrated fashion. We still recommend its use at the boundary of
the deployable component.

32

No Default Implementation Rule (the need for some class)

The rationale for this rule is that a personality cannot possibly provide a “default”

implementation. We are aiming at encapsulating behavior that might be reused by a number

of distinct classes. Therefore, the “default” versions for the downstream interface methods

might vary greatly in different contexts and thus a common implementation does not make

sense. Pragmatically, this rule makes a personality uninstantiatable on its own. This much is

easily enforceable by the compiler.

This rule also calls for the semantics of the downstream functions to be clearly understood

and defined. These functions are the weak link with regards to the semantic integrity of the

entire system, since they are the ones implemented by the personifying classes. It is thus

essential for them to be easily understood by the programmer. For instance, a downstream

interface that is ambiguously defined with respect to its return value format, such as:

// compute and return today’s date
String Today();

would not be of much help to the developer personifying this personality, since it provides

no clue about the format the answer must be in. Checking that the personality does not

implement the downstream interface functions is simple. Automatically making sure the

semantics of those functions are clear, on the other hand, is still an open problem.

Basic Types Rule (KISS)

A compiler can easily check this requirement, which ensures an attainable minimum set of

pre-required knowledge in order for any class to personify a given personality. We restrict

personalities from making the parameters and return values of the downstream interface

methods user-defined types, since this will imply that the personality would forever need to

be deployed with an implementation for the user-defined types it uses. We require restricting

these signatures to the lowest common denominator for the given programming language.

For instance, this rule hinders the programmer of a personality from the following

declaration in the downstream interface:

33

MyDateClass Today(); // return today

This declaration couples the personality with the user-defined type MyDateClass and

damages its reusability, since the given personality will forever need to be deployed alongside

the package that defines MyDateClass. Using Java’s “standard” Date class, the following

would be preferable.

// return Java’s Date for Today
Date Today();

After some debate, we decided to demote this rule to recommendation-level status. Strictly

enforcing this rule makes the job of componentizing personalities too difficult, as translation

to/from basic types is required at every interface. We strongly recommend the use of this

rule at the “boundary” of the unit of deployment (whatever this may be) since that would

ease the way for the user of the personality “component”.

Behavioral Buffer Rule (gotta do something, after all)

This rule attempts to make personalities the clear boundary between the clients of the

personality (i.e. the upstream objects) and the personifying classes (i.e. the downstream

objects). This aims at providing a specific layer of design reuse at the personality level. In

other words, by restricting the clients to only use the popular behaviors provided by the

personality, we are fixing the client’s entry point to the personality. Once again, the compiler

can easily enforce this requirement.

For example, a class that needs to interact with a Swimmer can only call Swim(int

meters, int depth) and not any of the other functions (i.e. Submerge(),

MoveFin(), etc). The di keyword in the personality’s definition is aimed at helping the

compiler and the user of the personality to clearly discern what is allowed and what is not. In

the following sample code, both correct and incorrect use of a personality’s interface are

illustrated:

34

// SeaWorldShow() is a client of Swimmer pers.
void SeaWorldShow(Swimmer shamuorflipper) {
 shamuorflipper.Swim(10,10); // ok, ui used
 shamuorflipper.Submerge(); // error, di used
}

Fixed Popular Behavior Rule (don’t go second-guessing me)

This aims at making sure that the personifying classes do not change the originally intended

semantics for the personality2. For example, if we would allow a LazyPelican class to do

something like what is shown in Code Sample 3 the semantic integrity of the system would

be compromised, since this special mosquito only flies at about half the altitude as what the

personality promises it would. Furthermore, since this particular implementation of

Fly(...) contains a logic error, its effects are undefined. Therefore, the compiler should

make sure that personifying classes implement the downstream interface and any other

private functions, but never the upstream interface.

// LazyPelican.pj
class LazyPelican extends Oviparous
 personifies Flier
{
 ...implementation of downstream interface
 // we shouldn’t redefine Fly(...)!
 public void Fly(int x, int y, int altitude) {
 Takeoff();
 for(int a = 0; a < altitude/2; a++) Ascend();
 while(!ThereYet(x, y)) FlapTowards(x, y);
 for(int a = altitude; a > 0; a++) Descend();
 Land();
 }
}

Code Sample 3: A LazyPelican redefining what it shouldn’t

Implementation Separation Rule (to each its own)

Finally, this rule makes personalities follow their own advice by requiring that all

communication with the personifying class be restricted to the functions defined in the

2 Personalities cannot have complete certainty that the intended semantics will be realized in

the DI. We know of no way of automatically specifying and validating source-code
semantics, and thus we claim that Personalities provide some semantic guarantees, but not
strong guarantees.

35

downstream interface. This aims at making sure that the set of functions is enough to

support the semantics of the personality, and trigger the discovery of new ones if not. It also

forces personalities and personifying classes to have only one meet point, namely the

downstream functions. The same argument regarding the communication between clients

and personalities set forth in the Behavioral Buffer rule is valid regarding the implementation

of the personality’s high-level behavior themselves. For example, allowing

personality Flier {
 ...
 void Fly(int miles, int altitude) {
 jumpInTheAirAndStartFlapping(); // not in
 // downstream interface !
 }

might restrict the applicability of this personality only to Mosquito and its subclasses (this is

assuming, of course, that the proper method visibility allows this code to be accepted by the

compiler in the first place!).

The Rule That Almost Made It

We originally [Blando98] thought about having a rule for making sure that every personality-

implemented popular function actually added some behavior on top of the downstream

interface semantics. The rationale was that, in an ideal world, each layer of functionality

would talk to the layer right below, and no need for pass-through functions would be

required. In other words, we were naïve.

We do not live in an ideal world, and even if we did, sometimes clients still need access to

primitive functionality (such as that embodied by the downstream interface). After this

realization, we decided to allow the clients access to the downstream interface functionality

as long as there is an upstream interface method that serves it. In order to maintain a

behavioral buffer we need to make certain that the clients only talk to the upstream interface.

Therefore, if the personality expects its clients to need any of its low-level functionality, it

needs to publicize it through an upstream interface that simply delegates to the downstream

counterpart.

36

Chapter 3

DYNAMIC PERSONALITIES

This chapter explains the intrinsic dynamic nature of roles, critiques Personalities as

presented in Chapter 2, explores the reasons and usability of the concept of Dynamic

Personalities, and presents two different approaches for achieving dynamic behavior within

the Personalities context.

WHY DO WE EVEN CARE ABOUT THIS?

Roles are dynamic by nature. Figure 7 shows a very simple class hierarchy. A Person is not

born an Employee, much less a Manager. As time goes by, the Person “becomes” these

roles. The dynamic nature of roles is perfectly consistent with the real world. If we attempt

to create a software system that models the real world as closely as possible, it is only

appropriate that we allow for the possibility of roles to be dynamically “attached” and

“detached” from objects. This is related to a well-known problem, the object migration

[Wieringa95] problem.

Figure 7: Person, Employee, Manager hierarchy

37

Traditional approaches to this problem have resorted to creating new instantiations (that is,

new objects) as time goes by and the state of the original (i.e. Person) object changes. From

a modeling perspective, creating an instance of an Employee object, or a Manager object,

while keeping the original Person object around is counterintuitive, since all three objects

are really the same real-world entity (i.e. John Smith). Also, the behavior of these three

instantiations will either be very tightly coupled (i.e. using delegation) or some sort of

duplication of object state will take place. In the first case, the code for the “personalized”

object (i.e. Employee) needs to account for the fact that it needs to retrieve all Person-

based state from the Person instance it is “bound” to at creation time. This, besides being

error prone in the face of complex classes, is also problematic in terms of maintenance, since

the Person class might be modified in the future and overlap with some of the state and

semantics that the current version of the Employee class considers its own. At that time,

the Employee class needs to be modified or state duplication will take place. Duplication of

state is very error prone since keeping the states synchronized is not trivial. In the more

simpler approaches, synchronization is ignored; in the most complex ones, database

procedures such as two-phase commit might be necessary to guarantee the accuracy of a

“split” object’s state on the face of state-altering method calls.

Alternative approaches to the problem of changing roles also include re-classification

schemes. In these, the Person object would be destroyed and a new Employee object will

be created from the old object. This solution is costly computationally and presents the

problem of not preserving object identity. Each new instantiation (i.e. Employee) is a brand

new object, even if it is tightly bound to the original object (i.e. inherits from the Person

class). In the face of a distributed environment, having new instantiations with different

object identifiers mean that all clients of the old object need to be “refreshed” with the new

reference. This is necessary if we want services which are based on the concept of immutable

object identifiers (i.e. CORBA, COS Persistence State Services, etc.) to continue working as

expected.

38

WHAT’S WRONG WITH PERSONALITIES “AS-IS”

Personalities help in modeling software with roles. There is nothing wrong with the concept

of Personalities per-se. When we turn that concept into a software implementation such as

the one presented in Chapter 2, however, we run into some difficulties. But before we

condemn static personalities, let’s take a look at how they help with the problems of the

previous section.

WHERE STATIC PERSONALITIES HAVE IT RIGHT

In this section, we consider only the benefits of Static Personalities in relation to the

dynamic role problem. We have explored the benefits of personalities in other contexts in

previous chapters.

Static personalities lay the foundation for dynamic roles to be implemented. However, they

also help in other respects. For example, static personalities help preserve object identity,

since the potentially many different roles are “hidden” within the object itself. They still

present very different interfaces to different systems, although they do not control which

interface is active at any given time. For example, the following definition does allow

different systems to interface with this single Person object as an Employee or as a

Manager object

// Person will (someday) be Employee and, with
// any luck, also a Manager
class Person personifies Employee, Manager

Thus, static personalities can completely avoid having to re-classify an object every time its

state changes.

WHERE STATIC PERSONALITIES FALL SHORT

Static Personalities impose no constraints on which Personality the class must be

personifying at any given time. For instance, the moment the Person object is created, it

can be passed to the MIP (Manager-Incentive-Program) system even though that Person

39

might not even be an employee yet! To some degree, static personalities resemble inheritance

in this particular case. Instantiation of the above Person object would be similar to always

instantiating a Manager object, which in turn inherits from an Employee and ultimately

from a Person object. You can always call the object using its Person-defined methods,

but can also use its Manager-defined methods at any time if you so please.

As presented in Chapter 2, the concept of Personalities is completely static. This means that

Personalities are assigned to classes at compile time, and are carried with the object

throughout its lifetime. This approach works fine for certain types of roles that are inherent

to the object itself, although these are hard to find and usually belong to the inheritance

hierarchy anyway. In general, lifelong attachment of Personalities to classes is not flexible

enough to model roles accurately. As an example, a Pelican might be a Flier for only a

period of its life, but it will always be an Oviparous animal.

Furthermore, static personalities lack commonality between themselves. That is, each

Personality is its own unique entity and shares no protocol or interface with other

personalities. This is disadvantageous because Personalities are supposed to be freely

applicable to any class, and thus one would expect a personifying class to conform to some

kind of base interface, but they don’t. In short, Personalities embody micro-frameworks well,

but don’t go a long way in making macro-frameworks’ life any easier.

DYNAMIC PERSONALITIES

To solve the problems mentioned above, we can extend the concept of Personalities to

accommodate dynamic attachment and detachment at runtime. Furthermore, we extend the

Personality concept with a simple protocol so that it can be more easily handled by the client

code.

40

WHAT WE ARE TRYING TO ACHIEVE

To provide some context for what follows, we will first specify what we are hoping to

achieve with Dynamic Personalities. It should be noted that this is a partial list of goals, used

mostly to compare the pros and cons of the different approaches we will present later on.

1. Runtime attachment and detachment. That is, we should be able to have an object

“act as” different Personalities at different times. In the same spirit, we need to be able

to take some behavior away from an object. (i.e. a Person is laid off and thus he can no

longer personify Employee)

2. Preservation of object identity. We would like to create an object and preserve its

reference or identity throughout its lifecycle.

3. Preservation of typing. While preserving identity is a more important (i.e. it has

operational implications), preserving type information to allow for compile-time

checking is useful in the software building process.

4. Common interface. We would like all personalities to share some common base

interface, so that systems that use classes that include personalities are able to resort to a

baseline protocol with which to communicate and “discover” the characteristics of the

class.

5. Ubiquitous personification. Ideally, we would like to be able to attach any personality

to any class, provided that the class fulfills some pre-defined set of requirements. This

would allow us to develop the classes in complete isolation from the personalities

(possibly even at different times) and still be able to combine them together.

6. Reasonable performance. Ignoring this issue would be foolish, as any solution that

does not take into account such a pragmatic concern is headed for failure. We expect a

Personality-based implementation to be within the same order of magnitude from a

multiple-inheritance based implementation with respect to execution speed. We place no

41

requirements or make no claims about compilation time, since that is usually not a

critical factor3.

INDECISIVE PERSONALITIES. (NOT FULLY DYNAMIC, BUT GOOD ENOUGH)

A minimalist approach to Dynamic Personalities yields Indecisive Personalities. Concentrating in

the most important benefit, namely runtime attachment and detachment, we could imagine a

scenario where a class declares its intent (and conformance) with a set of personalities at

compilation time. The class, however, does not automatically get any of these personalities

until they are “attached” to it. For instance, the Personalities/J4 statement:

class Person personifies Employee, Manager

specifies that Person will “in the future” personify Employee and/or Manager. A third-

party needs to instruct the class, at a later time, to enable or disable a given personality.

This approach has the obvious drawback that the set of all needed personalities needs to be

specified at compile time, which in fact limits the freedom of the designer since she needs to

“plan ahead”. From a more practical perspective, however, we have found that roles

themselves can be modeled into hierarchies and that usually classes personify the “abstract”

versions of these roles. For instance, personifying a generic Employee role is broad enough

to encapsulate many potential different cases.

On the positive side, though, we do expect to preserve the types of all these personalities

and thus we will be able to do type checking in both the personality itself and also on the

code of the different client systems. Performance should be degraded only minimally, since

we expect method dispatch to be slowed only by a single check to verify the “on/off state”

of the personality on the current class.

3 Incidentally, with Moore’s law at full-speed, nor is memory footprint that big an issue any

longer. However, the “need for speed” seems to live on.

42

FULLY DYNAMIC PERSONALITIES (THE WONDERS OF SIMPLIFYING)

A more ambitious approach to solving the problem of the dynamic nature of roles would be

to completely redesign the programming language’s type system and method dispatch

mechanism to allow for runtime mutation of an object’s methods table. With such an

approach, a class need not declare its intent of personifying anything, since all

personifies statements will be handled at runtime.

At the conceptual level, this approach faces two immediate problems: how to manage

method dispatch while preserving some degree of type checking, and how to determine and

validate a given class’ conformance to a personality’s requirements in terms of its

downstream interface. Let’s investigate these in detail.

Method Dispatch in Dynamic Personalities

The purpose of specifying Personalities for objects is so that these can be used by the client

systems’ code to make requests that contain some specific syntax. Clients, therefore,

program solely against a Personality’s upstream interface. With fully dynamic personalities,

however, this client’s request code needs to be accepted by an object that, at class-creation

time might not have known it would have had to support such a function.

For instance, in our Flier personality, the Fly() function is expected from every object

that personifies Flier. Therefore, with static personalities class Pelican knows that

sooner or later a Fly() request will come its way, and it can thus prepare for that. In the

dynamic personalities case, however, Pelican does not know what personalities will

eventually be personified by itself, and thus it cannot prepare (i.e. have the Personalities/J

compiler add the Fly() method to the class implementation).

Since we would like to preserve the typing information at the client code, we still need to

come up with a solution to the problem of method dispatch. One potential mechanism in

4 Defined in the next Chapter, Personalities/J is the name we have given to the Personalities-

based, Java-like programming language.

43

the absence of mutable dispatch tables is to mimic one by lifting all the functions in a

personality’s upstream interface into a generic “catch-all” function in charge of dispatching.

In the example above, for instance, the Personalities/J compiler would add the Fly()

method and its parameter into the personalities list of available functions, while at the same

time modifying the client’s code to call the generic catch-all function with Fly() as one of

its parameters. Each class must then implement this catch-all function which will unmarshall

the parameters and yield to the appropriate personality implementation. Notice that with this

approach, we can still preserve type-checking of the client’s code since that can be done

before the lifting phase. Code Sample 4 shows the original code, on the left, and pseudo-

code for the output of the compiler on the right, showing the lifting of the upstream

interface methods.

// Flier.pj
personality Flier {
 void Fly(...) { ... }
 ...
}

// Pelican.pj
class Pelican {
 ...
 // no Fly() in here!
}

// SkyWorldShow.pj
class SkyWorldShow {
 void perform(Flier aFlier) {
 aFlier.Fly(10,10,10);
 ...
 }
}

// after processing by Personalities/J
class Flier {
 void Fly(...) { ... }
 ...
}

// all classes now are Personable
class Pelican implements Personable {
 ...
 void CATCHALL(String name, ...) {...}
}

// The client’s code gets mutated into
class SkyWorldShow {
 void perform(Personable aFlier) {
 aFlier.CATCHALL(“Fly”, 10, 10, 10);
 ...
 }
}

Code Sample 4: Lifting Flier’s upstream interface and changing client code

The CATCHALL method, which is standard for all the classes in the system, plays the part of

a dynamic dispatch mechanism. There could be a standard framework in which the

parameters of this CATCHALL function are fixed and all calls are routed through it.

Furthermore, each personality could define the entry points and signatures for each of the

functions in its upstream interface, and these would both get added to a class’ dynamic

personality table at “personification” time.

44

Class’ Conformance to a Personality’s DI

Determining whether a given class can indeed personify a personality is a more complex

problem. Since we are now dealing with the dynamic attachment of personalities at runtime,

we need to make sure that the functions that are exported by the class do indeed fulfill the

personality’s downstream interface specifications.

In the absence of a computationally tractable way of specifying and validating the semantics

of a piece of software, we must place our trust in the programmer. In other words, when a

personality gets “attached” to an object, the programmer needs to implicitly (via identical

method signatures) or explicitly (via mapping from the personality’s DI signatures to the

class’ methods) specify how the class will fulfill the downstream interface. Thus, when the

programmer attachs the Flier personality to the Pelican object we expect Pelican to

either have methods named Ascend(), Takeoff(), etc. or the programmer to specify

which of the methods that Pelican does have will perform each of these functions. These

maps can be generated on the fly at personification time. Also, the selective dispatching of

downstream interface functions from upstream method’s implementation using these maps

could be made part of a standard ancestor to all personalities pretty much in the similar way

that the CATCHALL method is part of every class. In that way, every personality will know

how to deal with maps at runtime.

Once we have determined that a given class does indeed have what it takes to personify

some personality, we still need to make it work. From Chapter 2 we know that the

personality’s upstream interface implementations need to talk back to the personifying class

through the downstream interface methods. Since we are working in a typeless, dynamic

environment, we cannot simply expect to call these downstream interface methods on the

personifying object reference since we don’t have access to the object’s type. This problem is

solved by making sure that all the methods in a class are part of the CATCHALL scheme. In

this way, the upstream methods can use the same trick to call the downstream functions.

It is important to note that the approach mentioned above would work with any standard

programming language. Our purpose in this chapter is not to rely too heavily on a particular

45

language implementation but rather to understand the motivation behind these ideas. With

Java’s introspection facilities, however, these tasks become simpler and more streamlined,

since we can actively inquiry any class for the methods it supports and thus the no-map

personification process becomes very simple. Also, the upstream implementation becomes

simpler since we can now discover the type and functions of the object and call these

directly by creating invocations.

46

Chapter 4

PERSONALITIES/J

This chapter delves into the implementation details of the Personalities concept. Static

personalities are presented, followed by dynamic personalities. Appendix A contains the

complete source code for the code samples shown in this chapter.

A FEW WORDS ABOUT THE PROGRAMMING ENVIRONMENT

Our approach for implementing the Personalities/J language and compiler has been to

maintain, as much as possible, the familiar Java programming language environment.

However, we have made the underlying assumption that the programmer deals only with

Personalities/J modules and that the Java language is merely an intermediary step between

the .pj code and machine code.

We use the Java programming language as our target language, and rely on commercial Java

compilers to create the bytecode or the native machine language code. We decided in favor

of using delegation to implement Personalities/J. In retrospect, this was a good decision

since it helped us in the transition from static to dynamic personalities.

IMPLEMENTING STATIC PERSONALITIES

Static personalities, although not as powerful as their dynamic counterpart, help us lay the

foundations of the implementation of the Personalities concept.

JAVA AND INTERFACES

If we were relying on a language that supported multiple inheritance, such as C++, then the

implementation might have been somewhat eased (with the Personalities/J compiler

47

concentrating mostly on enforcing the additional semantic constraints that Personalities

impose over multiple inheritance semantics). Our target language, Java, on the other hand

does not support multiple inheritance. It does, however, support interfaces.

Interfaces, as understood in the Java programming language, allow a class to advertise the

implementation of selected methods by declaring its compliance with arbitrary sets of

method signatures called interfaces. An interface contains only method signatures but no

implementation. We use Java interfaces as a tool to implement Personalities.

THE MAPPING PROCESS

The steps to define a personality have already been presented in Chapter 2 (See Code Sample

1, for instance). Similarly, how to make a class personify a personality has also been

explained (See Code Sample 2). We have not, however, described how a client system can

make use of a class that personifies a given personality, or the details of the Java code that

the Personalities/J compiler generates.

Using a Class that Personifies

In a nutshell, using a class that has a given personality is as simple as casting the class to the

appropriate personality and simply calling its upstream interface methods. Code Sample 4

shows the prototype of a simple client that gets an object, casts it to a Flier “object”, and

calls its personality-defined Fly() method.
// ... client that uses a class that personifies the
// ... Flier personality, reference is passed as Object
// ... but the client knows that the “object” actually
// ... personifies a Flier
void DoSomethingWithAFlier(Object anObject) {
 Flier aFlier = (Flier)anObject;
 aFlier.Fly(10,10,10);
}

Code Sample 4: A client using an object that personifies Flier

It is important to notice that there is an underlying assumption about the amount of

knowledge the client has about the class. In other words, even though the client is passed an

Object, it does know that this object actually personifies Flier. This is not an

48

insurmountable constraint since clients are hopefully designed to know their objects, and

delegate to other clients that know only (and are built for) a given specific Personality. We

call these the “knowing” and “unknowing” clients, respectively.

void main() {
 // ... taken from Zoo.pj [static] in Appendix-A
 // ... knowing client sets up its data structs.
 Vector all_swimmers = new Vector();

 ...

 // ... classes are created. This “knowing” client
 // ... knows how to classify them. Notice how it
 // ... puts the object into the appropriate vector
 // ... depending on whether it personifies Swimmer,
 // ... Flier, Jumper, or Walker
 SeaLion toto = new SeaLion();
 toto.setName("Toto");
 all_swimmers.addElement(toto); // personifies Swimmer
 all_walkers.addElement(toto); // personifies Walker
 all_jumpers.addElement(toto); // personifies Jumper

 ...

 // ... when this clients needs to do work, however,
 // ... it delegates to other functions (potentially
 // ... entire systems that are built only to the
 // ... personality interface. For instance, it delegates
 // ... to PoolShow(), but notice how it casts the object
 // ... first
 for(int i=0; i < all_swimmers.size(); i++)
 PoolShow ((Swimmer)all_swimmers.elementAt(i));

 ...
}
// ... this “unknowing” client knows only about
// ... the personality it cares about.
static void PoolShow(Swimmer swimmer) {
 System.out.println(" PoolShow with " + swimmer);
 swimmer.Swim(1, 1); // and uses its UI
}

Code Sample 5: Knowing and Unknowing clients

Code Sample 5, for instance, has been taken from Zoo.pj [static version] in Appendix A.

We can see both types of uses of the object. First, the knowing client (main() in the

sample) has full knowledge of the class it creates and its associated personalities. It can

therefore cast it safely to any of the given personalities. Second, the unknowing client

(PoolShow() in the sample) does not know about sea lions, pelicans, or whales. It has been

designed and written to work only with Swimmer objects. While in the examples in this

thesis there’s not too much of an explicit separation between these two types of clients, they

are the cornerstone of the usability of the Personalities concept. We expect, therefore, for

49

these two “clients” to actually be entire systems, the unknowing ones built on top of the

personalities’ upstream interfaces, whereas the knowing ones (i.e. the “factories”) are

enterprise/domain dependent.

Mapping to Java

Each .pj generates at least one .java file. Figure 8 shows a representative set of

Personalities/J files and the Java files they generate. Consult Appendix-A for the source

code of a complete example.

interface Flier
{ ... }

class Flier$Ego
{ ... }

class Bat
 implements Flier
 { ... }

class Zoo
{ ... // uses }

personality Flier
{ ... }

Flier.pj

class Bat
 personifies Flier
{ ... }

Bat.pj

class Zoo
{ ... // uses }

Zoo.pj

Flier.java

Flier$Ego.java

Bat.java

Zoo.java

Figure 8: Generated Java files

A personality definition (i.e. Flier.java) generates two files. The first is simply the

definition of a Java interface that encapsulates the upstream interface methods. In order to

simplify the Personality infrastructure, this interface also includes the downstream interface

methods. On the surface, this might appear to go against the goals of this work about

separating the two interfaces. However, the Personalities/J compiler performs syntax and

semantic analysis on the set of .pj files (which do separate between downstream and

upstream interfaces). Furthermore, all of the Java files are deterministically and automatically

generated by the compiler from the set of .pj files. We are thus guaranteed (assuming the

50

compiler works as advertised, of course) that clients are not accessing the downstream

interface methods, even though they might look accessible via Java5.

Once the Personalities/J compiler has finished its work, the set of generated Java files are

arranged according to the diagram of Figure 96. The relationship between the client system

(class Zoo) and the personalities’ interfaces are not shown to keep the diagram readable.

However, bear in mind that class Zoo actually contains two types of client methods, one

that knows about its objects (shown) and several that only know about the personalities (not

shown).

The personifying classes make use of the $Ego classes to implement the Personality defined

behavior. The compiler inserts the code for the aggregation when it generates the Java files.

It also generates proxies for the personalities’ upstream interface methods. This is all done

automatically from the .pj files. Code Sample 6, extracted from Appendix A, shows the

SeaLion.java file. Notice how the compiler has inserted the code for creating

Swimmer$Ego, Walker$Ego, and Jumper$Ego. In addition, it has inserted the proxies

for Swim(), Walk(), and Jump() that correspond to each of the personalities the sea lion

personifies. Code Sample 11 shows the algorithm for generating these files.

The $Ego classes implement the personality defined behavior. Since that behavior depends

on the class-defined downstream interface implementation, the $Ego classes need an

instance of the class to be able to call its downstream interface methods. This is where

defining the Java interface to contain both upstream and downstream interface methods

5 In this thesis we ignore the problem presented by potential name clashes in the face of

multiple personifies statements. While important, the solution to that problem is
somewhat orthogonal to the issues being addressed in this thesis. Furthermore, a solution
to such a problem would benefit not only Personalities but also other programming
languages. We thus ignore the problem altogether and assume the more common model of
aborting compilation when clashes exist.

6 The $ sign in the identifiers has been replaced by an underscore (_) because of
diagramming tool inadequacies

51

becomes useful. We can thus use the Personality “type” in the $Ego classes as the host

parameter and use it to delegate back. Code Sample 7 shows the Swimmer$Ego class.

Figure 9: Generated Java system’s relationshipsi

52

// SeaLion.java [static]
import java.util.*;
public class SeaLion
 extends Mammal
 implements Walker,Jumper,Swimmer
{
 // for Walker
 public void Prepare() {
 trace("SeaLion.Prepare()"); }
 public int NumberOfFeet() {
 trace("SeaLion.NumberOfFeet()");
 return 2;
 }
 public void MoveFoot(int feetno) {
 trace("SeaLion.MoveFoot()"); }
 public void Stabilize() {
 trace("SeaLion.Stabilize()"); }
 public void AtEase() {
 trace("SeaLion.AtEase()"); }
 // for Swimmer
 public void JumpInTheWater() {
 trace("SeaLion.JumpInTheWater()");}
 public void Submerge() {
 trace("SeaLion.Submerge()"); }
 public void MoveFin() {
 trace("SeaLion.MoveFin()"); }
 public void Rise() {
 trace("SeaLion.Rise()"); }
 public void JumpOutOfTheWater() {
 trace("SeaLion.JumpOutOfTheWater()");}
 // for Jumper

 public boolean
 CheckDistance(int x, int y) {
 trace("SeaLion.CheckDistance()");
 return true;
 }
 public void SprintTo(int x, int y) {
 trace("SeaLion.SprintTo()"); }
 public void LiftOff(int alt) {
 trace("SeaLion.LiftOff()"); }
 public void Land() {
 trace("SeaLion.Land()"); }
 // ============== for Swimmer
 Swimmer$Ego $swimmer=new Swimmer$Ego();
 public void Swim(int miles, int depth)
 {
 $swimmer.Swim(this, miles, depth);
 }
 // ============== for Walker
 Walker$Ego $walker = new Walker$Ego();
 public void Walk(int distance) {
 $walker.Walk(this, distance);
 }
 // ============== for Jumper
 Jumper$Ego $jumper = new Jumper$Ego();
 public void Jump(int x, int y, int alt)
 {
 $jumper.Jump(this, x, y, alt);
 }
}

Code Sample 6: SeaLion.java7

// Swimmer$Ego.java [static]
public class Swimmer$Ego
{
 public void Swim(Swimmer host,
 int miles, int depth) {
 host.JumpInTheWater();
 for (int d = 0; d < depth; d++)
 host.Submerge();
 while ((miles--) > 0) host.MoveFin();
 for(int d = depth; d > 0; d--)
 host.Rise();
 host.JumpOutOfTheWater();
 }
 public Swimmer$Ego()
 { }
}

Code Sample 7: Swimmer$Ego.java2

The implementation of the $Ego classes, however, is basically identical to that present in the

personality definition itself. The compiler needs to make sure it places the reference to the

7 Code automatically inserted by the Personalities/J compiler is shown in bold typeface.

53

host variable in a few critical locations. The algorithm presented in Code Sample 8 can help

explain the process by which the compiler determines how to create the $Ego files.

/* process_method: given personality P and method m,
 insert host wherever appropriate */
proc process_method(P, m) {

ret ← return type of «m»
nam ← name of «m»
par ← parameter list of «m»
println(“public “ + «ret» + “ “ + «nam»+
“(“ + «P» + “ host, “ + «par» + “) {“)
for each statement stm in «m» do

for each token tok in «stm» do
if «tok» is not a function call

print(«tok»)
else

if «tok» is part of the DI of «P»
print(“host.” + «tok»)

else
print(«tok»)

endif
endif

endfor
println()
endfor

println(“}”)
endproc

/* Generate the $Ego file given «P» */
proc gen_ego(P)

println(“public class “ + «P» + “$Ego”)
println(“{“)
foreach UI method uim in «P» do
process_method(«uim»)

endfor
foreach private data member mbr in «P» do
println(“private “ + «mbr»)

endfor
foreach private function pfn in «P» do
println(«pfn»)

endfor
println(“public “ + «P» + “$Ego() {”)
con ← constructor of «P»
process_method(«con»)
println(“} }”)

endproc

Code Sample 8: Pseudo code for generating the $Ego classes

Last, but certainly not least, the Personalities/J compiler must generate the Java interface file.

Code Sample 9 shows an example of such a file for the Swimmer personality, whereas Code

Sample 10 presents the simple algorithm to generate these interfaces.

// Swimmer.java [static]
interface Swimmer
{
 public void Swim(int miles, int depth);
 void JumpInTheWater();
 void Submerge();
 void MoveFin();
 void Rise();
 void JumpOutOfTheWater();
}

Code Sample 9: The Java interface Swimmer.java8

8 Code automatically generated by the Personalities/J compiler is shown in bold typeface.

54

Figure 10 shows a dynamic view of a client instantiating a new object that in turns

personifies the Swimmer personality. The client in the diagram (aZoo) is not involved in

creating the different $Ego classes for the object. The code automatically inserted by the

Personalities/J compiler takes care of that and the whole process is transparent to aZoo,

who needs to know only how to create a SeaLion named toto, and nothing else.

Figure 10: Creation of objects and their associated $Ego classes9

/* gen_interface: given personality P create the interface file */
proc gen_interface(P)

println(“interface “ + «P» + “{“)
foreach UI method uim in «P» do

sig ← signature of «uim»
println(«sig»)

endfor
foreach DI method dim in «P» do

println(«dim»)
endfor
println(“}”)

endproc

Code Sample 10: Pseudo code for generating the Java interface file

9 The $ sign in the identifiers has been replaced by an underscore (_) because of

diagramming tool inadequacies

55

/* gen_class: generate the Java file for the class
 definition given the class PJ file C */
proc gen_class(C)

ext ← parent of «C»
println(“public class “ + «C»)
if «ext» is not empty

println(“ extends “ + «ext»)
endif
per ← personifies list of «C»
if «per» is not empty

if «ext» is not empty
print(“, “)

endif
print(“ implements “ + «per»)

endif
imp ← implements list of «C»
if «imp» is not empty

if «per» is not empty
print(«imp»)

else
if «ext» is not empty

print(“, “)
endif

println(“ implements “ + «imp»)
endif

endif
println(“{“)
bod ← body of «C»
println(«bod»)
foreach personality p in «per» do

pp ← «p» with first letter’s case changed
println(«p» + “$Ego $” + «pp» +

“= new “ + «p» + “$Ego();”)
foreach UI method uim in «p» do

ret ← return type of «uim»
nam ← name of «uim»
par ← parameter list of «uim»
println(“public “ + «ret» + “ “ +

«nam» + “(“ + «par» + “) {“)
println(“$” + «pp» + “.” + «nam»

+ “(this, “ + «par» + “); }”)
endfor

endfor
println(“}”)

endproc

Code Sample 11: Pseudo-code for creating the Java class files

Figure 11 shows a sequence diagram corresponding to a client (aZoo) accessing our

previously created SeaLion toto. The client uses the Swim() method, which is part of

Swimmer’s upstream interface to contact toto. The proxy code that has been inserted by

the Personalities/J compiler in the SeaLion class immediately delegates to the

Swimmer$Ego instance, which was previously created at construction time. The proxy,

however, adds a reference to itself (i.e. its class) on the call to Swimmer$Ego, so that the

latter can call toto back for its implementation of the downstream interface methods.

THE CHANGES FOR DYNAMIC PERSONALITIES

Chapter 3 presented two approaches for dynamic personalities. In this work, we will present

our implementation of Indecisive Personalities, leaving an implementation of the fully

dynamic approach for future work. It is the author’s belief that the constraints imposed by

56

indecisive personalities are not drastic, and more than offset by the simplicity of the

implementation.

Figure 11: Using an upstream interface method10

 When defining the implementation patterns for dynamic personalities, we strived to make

the changes as small as possible, both in the user-space code (i.e. the *.pj files) and in the

Java-space code. Thus, we do not require any changes at all in the *.pj files for the

personality and the classes’ definitions. We do, however, require changes in the client’s code,

since it must now deal with the additional behavior of “attaching” and “detaching” a

personality.

10 The $ sign in the identifiers has been replaced by an underscore (_) because of

diagramming tool inadequacies

57

PERSONALITIES’ PROTOCOL

In order to bring some commonality to all personalities, we extended the concept and

provided the interface shown in Figure 12, supported automatically by the system, for all

personalities.

personify(“<personality>”) Enable personification of <personality>

forget(“<personality>”) Disable personification of <personality>

personifies(“<personality>”) Returns true or false depending on
whether <personality> is enabled in the
class.

personalities() Returns a Vector of Strings with the
names of all the personalities that are enabled in
the class.

Figure 12: Dynamic Personalities’ common protocol

CLIENT CODE CHANGES

In our running example (see Appendix A), we have made the assumption that the client code

is the one responsible for updating the state of its classes. For example, we assume that the

client code (i.e. Zoo.pj) will enable and disable the personalities for the animals in the Zoo.

This assumption is not entirely correct, as any class with a reference to the object and

knowledge of the object’s personifies set could have directed the object to enable or disable

a given personality. This is arguably not strong enough. We have not addressed the issue of

restricting the protocol-defined operations that a client class can perform on a personifying

class in this work. Creating a more secure way for updating the state of a class with respect

to its list of enabled personalities is left as a future work.

The client code, therefore, needs first to create an object, and enable/disable personalities as

it sees fit. Code Sample 12 shows an abbreviated version of the Zoo.pj client shown in

Appendix A. Notice how the client enables or activates the different personalities. It also

disables them through forget(). Last, notice how the client can check for the state of any

58

given personality before dispatching a call. Alternatively, it could dispatch and receive an

error or exception.

// smallZoo.pj
void main() {
 // create a new object
 SeaLion toto = new SeaLion();
 toto.personify(“Swimmer”); // enable Swimmer
 toto.personify("Jumper"); // and Jumper
 // this should print [Swimmer,Jumper]
 System.out.println(toto.personalities());
 toto.personify("Walker"); // enable Walker
 DoShow(toto);
 toto.forget("Walker");
 toto.forget("Jumper");
 toto.forget(“Swimmer”);
}
void DoShow(Object animal) {
 if (animal.personifies("Swimmer")
 ((Swimmer).animal).Swim(10,10);
 if (animal.personifies("Walker"))
 ((Walker).animal).Walk(10,10);
 if (animal.personifies("Flier"))
 ((Flier).animal).Fly(10,10,10);
 if (animal.personifies("Jumper"))
 ((Jumper).animal).Jump(10,10);
}

Code Sample 12: A dynamic client

THE GENERATED JAVA CODE

The Personalities/J compiler generates pretty much the same files as for the static case. The

contents of the files, however, are slightly modified to support keeping the personalities table

at each class. We define a class, Shrink, which keeps the list of the personalities that are

being enabled. This class acts as a singleton on a given inheritance chain. That is, there

should be only one Shrink object in the chain, and it should be located at the topmost class

that personifies anything. Code Sample 13 shows a simple algorithm for making sure the

Shrink class is allocated appropriately.

/* add_shrink: given class definition c from c.java,
 put the Shrink object and proxies in c.java */
proc add_shrink(c)

mbr ← data members of «c»
if «mbr» does not contain “Shrink $shrink”

mbr ← «mbr» +
“protected Shrink $shrink=new Shrink();
public boolean personify(String what)
{ return $shrink.personify(what); }
public boolean personifies(String what)
{ return $shrink.personifies(what); }
public boolean forget(String what)
{ return $shrink.forget(what); }
public boolean canpersonify(String what)
{ return $shrink.canpersonify(what); }
public Vector personalities()

{ return $shrink.personalities(); } “
endif
recreate «c».java using new «mbr»

endproc

/* place_shrink: utility function to keep last plausible
 Shrink placement while searching for a new one */
proc place_shrink(c, f)

per ← personifies list of «c»
if «per» is not empty

f ← «c»
endif
ext ← extends of «c»
if «ext» is not empty

place_shrink(«ext», «f»)
else

add_shrink(«f»)
endif

endproc

/* do_shrink: starts the process of finding the
 right place to put the Shrink object */
proc do_shrink(C)

per ← personifies list of «C»
if «per» is not empty

place_shrink(«C», «C»)
endif

endproc

Code Sample 13: Adding Shrink at the correct place in the inheritance chain

Once we have the Shrink instance properly located in the chain, we can modify the code

for the classes in the inheritance chain. Each $Ego class will now use the Shrink object as

a repository for the personalities. Thus, the chain-singleton Shrink is passed to the $Ego

classes in its construction. Also, all the proxy stubs for the upstream interface functions now

check to make sure that the object has the personality “enabled” before delegating. Code

Sample 14 shows the algorithm for generating these classes (changes in bold).

/* gen_class: generate the Java file for the class
 definition given the class PJ file C [dynamic] */
proc gen_class(C)

ext ← parent of «C»
println(“public class “ + «C»)
if «ext» is not empty

println(“ extends “ + «ext»)
endif
per ← personifies list of «C»
if «per» is not empty

if «ext» is not empty
print(“, “)

endif
print(“ implements “ + «per»)

endif
imp ← implements list of «C»
if «imp» is not empty

if «per» is not empty
print(«imp»)

else
if «ext» is not empty

print(“, “)
endif
println(“ implements “ + «imp»)

endif
endif
println(“{“)
bod ← body of «C»
println(«bod»)
do_shrink(«C»)
foreach personality p in «per» do

pp ← «p» with first letter’s case changed
println(«p» + “$Ego $” + «pp» +

“= new “ + «p» + “$Ego($shrink);”)
foreach UI method uim in «p» do

ret ← return type of «uim»
nam ← name of «uim»
par ← parameter list of «uim»
println(“public “ + «ret» + “ “ +

«nam» + “(“ + «par» + “) {“)
println(“if (personifies(“ +

 «p» + “))”)
println(“$” + «pp» + “.” + «nam»

+ “(this, “ + «par» + “); }”)
endfor

endfor
println(“}”)

endproc

Code Sample 14: Generating Java class files (dynamic version)

The $Ego classes, in turn, are the living proof that this object personifies the personality.

Thus, it is the perfect place where to implement the registration with the Shrink object.

Each $Ego class thus needs to register itself with the Shrink. Personalities/J needs to

modify the creation of the $Ego files slightly to accommodate this requirement. Code

Sample 15 shows the new algorithm, with the only change being adding an input parameter

to the constructor (the shrink object), and always generating a non-empty constructor that

registers the personality with the shrink (shown in bold).

/* process_method: given personality P and method m,
 insert host wherever appropriate [dynamic] */
proc process_method(P, m) {

ret ← return type of «m»
nam ← name of «m»
par ← parameter list of «m»
println(“public “ + «ret» + “ “ + «nam»+
“(“ + «P» + “ host, “ + «par» + “) {“)
for each statement stm in «m» do

for each token tok in «stm» do
if «tok» is not a function call

print(«tok»)
else

if «tok» is part of the DI of «P»
print(“host.” + «tok»)

else
print(«tok»)

endif
endif

endfor
println()
endfor
println(“}”)

endproc

/* Generate the $Ego file given «P» */
proc gen_ego(P)

println(“public class “ + «P» + “$Ego”)
println(“{“)
foreach UI method uim in «P» do
process_method(«uim»)

endfor
foreach private data member mbr in «P» do
println(“private “ + «mbr»)

endfor
foreach private function pfn in «P» do
println(«pfn»)

endfor
println(“public “ + «P» +

“$Ego(Shrink shrink) {”)
con ← constructor of «P»
process_method(«con»)

 println(“shrink.register_personality(“
+ «P» + “);”)

println(“} }”)
endproc

Code Sample 15: Generating $Ego files for the dynamic case

62

Chapter 5

PERSONALITIES AND THEIR BIG COUSINS

As explained in previous chapters, personalities only claim to help in the micro-framework

space. Getting more ambitious and thinking about system-wide scope, there exist a number

of approaches for encapsulating behavior. Frameworks are the most common case. We

explore how Personalities can help Frameworks by becoming the join points. We then

briefly consider other, more advanced, collaboration-based works.

FRAMEWORKS AND PERSONALITIES

The concept of personalities turns out to be a good vehicle for embodying the hotspots in a

framework. The hotspots are those classes that a user of a framework needs to either

subclass or specialize in some way to “adapt” the framework to her application. In the

general case, these hotspots are abstract classes that need to be subclassed by the application

developer. We claim that using personalities as hotspots is a cleaner approach and it also

overcomes certain programming language limitations.

ADAPTING A FRAMEWORK USING HOTSPOTS

A framework can be characterized as a collection of classes that embody a certain number of

specific behaviors. Just as personalities encapsulate functionality in their upstream interface

methods’ implementation, frameworks encapsulate functionality through the interactions of

several prototypical classes. Designing at the framework level is desirable because you can

concentrate on the semantics of the functions you are trying to implement, without being

bothered by the specific details of the class graph that will eventually embody the

framework. In other words, frameworks assume an “ideal” situation and implement their

behavior in that vacuum.

63

However, in order for frameworks to be usable, they need to be “plugged” or adapted into

an application11. The framework developer identifies the pieces of information that are

required from the application. These will be later used to customize the framework (which is

supposed to be generic) to each specific application. The pieces of information that are

required from the application usually take the form of classes in object-oriented

programming but object-oriented programming is by no means a requirement for the

existence of frameworks. As a matter of fact, some of the more successful frameworks so far

are not dependent on object-oriented programming languages. For instance, The X Window

System, is based in the C programming language.

Once the hotspots have been identified, there are potentially two ways in which an

application “connects” itself with the framework:

1. Using inheritance: the application developer subclasses the hotspot classes and

implements a number of abstract methods (only applicable with OO).

2. Using delegation: the application developer implements a set of predefined method

in her own classes and then ‘registers’ these classes with the framework.

Using inheritance is a simpler approach since the application developer need not worry

about specifically instantiating and registering the two different sets of objects (i.e. the

framework objects and the application objects). However, class inheritance is not convenient

when you have one of the following situations:

! There is one application-level class that could be used to embody two or more

framework-level classes.

! The application-level class that can embody the framework-level class is already

inheriting from another application-level class.

11 Whether the framework is “adapted” to the application or the application “adapts” to the

framework is a subject of heated dispute among practitioners ".

64

Framework

Application A Application B

Hotspots

Figure 13: Subclassing hotspots in framework instantiation

Both these situations lead to the need for multiple inheritance. Alternatively, adapters and/or

proxy classes [Gamma94] need to be created and maintained. Figure 13 depicts these two

problems. A framework with two hotspots is adapted by two different applications.

“Application A” has one class that can potentially subsume the functionality of both

hotspots, leading to multiple inheritance, while “Application B” has a class that provides the

functionality for one of the framework’s hotspots but it is already extending another class in

the application, which again leads to multiple inheritance.

Using delegation as the mechanism for joining an application with a framework avoids these

problems at a considerable expense in complexity. The application developer must now

make sure that the appropriate application classes are registered with the framework so they

can be called by it as part of the behavior the framework encapsulates. Delegation has

another side effect that might be undesirable. Since at runtime there will be two live objects,

the hotspot object and the delegation object, two object references will need to be

maintained. A decision needs to be made as to which object identity prevails at each layer of

abstraction. Since the framework will unavoidably call its own hotspot “object” for the

behavior it needs, the identity of the hotspot object seems to prevail. However, that object

65

reference will potentially not be enough for other application-level client objects since they

might need to interact with the object through a protocol not covered in the framework’s.

Using delegation of protocol, as presented in [Wieringa95] is a theoretic solution to this

problem. It essentially states that all methods not covered in the receiving object’s repertoire

should be passed on to the object associated to it. However, this solution will not work in

strongly typed languages, such as Java, since the hotspot type cannot be “cast” to the

application type. Figure 14 shows this problem in more detail.

HotspotA

-attrA: int

+void fwork();

AppClassA

-appAttrA:int

+void fwork(){...}
+void appFn(){...}

HotspotB

-attrB: int
-hsi:HotSpotImpl

+void fwork(){
 hsi.fwork();}

AppClassB

-appAttrB:int

+void fwork(){...}
+void appFn(){...}

HotspotImpl

+void fwork();

OID: HotspotA@0x0ffe23

OID: HotspotB@0x0ffe54

void client(HotspotA hs) {
 hs.fwork(); // ok
 ((AppClassA)hs).appFn(); // ok
}

void client(HotspotB hs) {
 hs.fwork(); // ok
 ((AppClassB)hs).appFn(); // error!
 // invalid cast
}

OID: AppClassB@0x0ffade

Figure 14: Delegation and object identity

PERSONALITIES AS HOTSPOTS

A better mechanism for implementing the hotspots in a framework is required. We believe

the Personalities concept is ideally suited for this purpose. By making each hotspot a

personality, we take advantage of all the personality’s additional semantics and compile-time

validation checks. Furthermore, we allow application developers to freely personify hotspots

66

in a clean, inheritance-like way, while still solving the different problems presented in the

previous section.

Personalities do encapsulate behavior at the micro-level. Being a realization of the template-

method pattern [Gamma94], they impose a sequence of lower-granularity operations for a

given high-level operation. We feel such a separation is healthy and forces the framework

developer to clearly define the semantics that she will require from the application developer.

Framework developers, however, might have defined completely empty classes, with no

implementation whatsoever. In these cases, the personality could degenerate to provide a

pass-through for all its downstream interface functions. While the additional benefits of the

template method pattern would be lost, the developers can still leverage the preservation of

identity and the freedom from the multiple inheritance problem that personalities provide.

PERSONALITIES AS TRAFFIC COPS

Our main point in proposing personalities as the glue between any collaboration-based

encapsulation of behavior (i.e. frameworks/APPCs/CGVs, etc) is that personalities’ clear

semantics can significantly ease the job of plugging frameworks together.

ShowFramework

Flier
class ShowDirector {
 Vector fliers=new Vector();
 ...
 void do_show(int a) {
 for(int i=0; i<fliers.size(); i++) {
 Flier aFlier=
 (Flier)fliers.elementAt(i);
 aFlier.Fly(a);
 }
 }
}

personality Flier {
 void Fly(int a) {
 Takeoff();
 Flap(a);
 Land(); }
 di void Takeoff();
 di void Flap(int);
 di void Land();
}

ShowDirector

Figure 15: ShowFramework with Flier as hotspot

67

As an illustrative example, let’s consider the case where we have decided to purchase a

ShowFramework framework for our Zoo system. For the sake of simplicity, we’ll omit

most of the details and will make ShowFramework only deal with air shows. As such, the

framework needs to know only about the Flier personality. Flier contains all the

semantics that ShowFramework requires to perform its job. Figure 15 shows a diagram

with some pseudo-code for one of ShowFramework’s classes and a simplified version of

the Flier personality.

Now imagine that instead of wanting to build a flying show for the Zoo, you decide to build

a flying demonstration for a plane show. What you need to do, then, is to personify Flier

in your application (i.e. Takeoff(), Flap(), and Land()) and off you go. However, you

early on realize that most of your planes actually takeoff and land in pretty much the same

way. Thus, you decide to obtain another framework (from potentially another manufacturer)

that encapsulates the behavior of mechanical planes that need to takeoff and land the way

planes do. Let’s call this the TakeoffAndLandFramework.

TakeoffAndLandFramework

LandGear
class MechFlier {
 LandGear lg = MechFact.makeLandGear();
 ...
 void takeoff() {
 ...
 lg.up();
 }
 void land() {
 lg.down();
 ...
 }
}

personality LandGear {
 void down() {
 if (_state = UP) {
 servoOn();
 servoMove();
 servoOff();
 }
 }
 void up() { ... }
 ...
}

MechFlier

Figure 16: TakeoffAndLandFramework with LandGear as hotspot

It is quite possible that this TakeoffAndLandFramework provides the application

developer with one (or more) functions to trigger the execution (just as the do_show()

68

function in the ShowDirector class is the entry point in the ShowFramework shown in

Figure 15). For the sake of simplicity, let’s assume that these functions are called

takeoff() and land() respectively. Figure 16 shows a diagram of this framework. It uses

personality LandGear as its hotspot. Some details have been omitted to keep the diagram

uncluttered.

So now you have purchased two different frameworks that might ease your job as the

application developer. Still, you need to glue them together. As explained in a previous

section, personalities can be used as hotspots very effectively to overcome some of the

programming language limitations that might arise in the use of frameworks. Personalities

also provide a nice demarcation point between frameworks. What is more, this demarcation

point is (usually) not shallow, but rather contains behavior in itself. This helps reinforce the

semantics required of the downstream interface from the application. In keeping with the

current example, you might have an application that looks like Figure 17. There are two

simple associated hierarchies, one for planes and another for wheels of planes.

PlaneApp
Plane

B747 WaterPlane

Wheels

class Plane { ... }
class B747 extends Plane { ... }
class WaterPlane extends Plane
{...}

class Wheels { ... }
class BWheel extends Wheels { ... }
class WWheel extends Wheels { ... }

BWheel WWheel

Figure 17: PlaneApp, the original application

The goal would be to make use of the ShowFramework and the

TakeoffAndLandFramework wherever possible. For that, we need to plug into the

hotspots Flier and LandGear, respectively. Furthermore, we realize that while our

69

“wheeled” planes can (and should) use the TakeoffAndLandFramework, our water

planes obviously should not, since they do not even have wheels12.

There are at least two alternatives to achieve our goals: composing frameworks automatically

using personalities, and delegating the composition to the client’s code. Let’s examine each

of these in detail.

Composing Frameworks using Personalities

The most obvious approach is to create a new framework composing both. For instance, the

Show_TakeoffAndLandFramework, shown in Figure 18, would support the

do_show() interface and will require LandGear as its hotspot. This has in effect achieved

an increase of granularity plus a decrease of abstraction in the hotspot (i.e. more control)

while preserving the high-level behavior (i.e. do_show()).

The process of composing two, already-existent frameworks can be automated through the

use of a compiler that we will call a compositor process. Figure 18 shows the changes that the

compositor needs to make to the frameworks in bold typeface. The reader might notice that

the naming conventions used in this example are conspicuously similar. In other words, it

was not by chance that the Flier personality requires Takeoff() and that the

MechFlier class provides takeoff()! In other words, composing frameworks does not

just “happen”, but rather it should be a well thought-out process.

Another interesting point has to do with the completeness of the composition. In the

example, we see that the TakeoffAndLandFramework will provide behavior for both

Takeoff() and Land() but is clueless about what to do with Flap(). The compositor

process therefore needs to determine which ones of the first framework’s hotspot

downstream interface methods will be provided and for those that will not, a new hotspot

needs to be created that simply proxies the original DI signature with identical semantics.

12 For reasons of symmetry, these “null” wheel classes (i.e. WWheel) are usually still modeled

and given empty behavior.

70

That is why in our example, the final application will need to personify both

PartialFlier and LandGear. The second framework class(es) that personify the

hotspots of the first framework will get these “partial” personifying objects at runtime much

in the same way any personifying object is bound. Also, the first framework’s hotspot (i.e.

Flier) is still available if the application decided to use only that part of the composed

framework. Once the compositor has finished, we are left with a separate and complete

framework that in no way depends on the other ones. It is in essence a new entity that we

can use to develop systems. Changes in the original frameworks will obviously not be

propagated to the new one, but then again running the compositor is trivial.

TakeoffAndLandFramework

LandGear

class MechFlier personifies Flier {
 LandGear lg = MechFact.makeLandGear();
 ...
 void takeoff() {
 ...
 lg.up();
 }
 void land() {
 lg.down();
 ...
 }
 // --- for Flier
 PartialFlier pf = getFromApp();
 void Takeoff() { takeoff(); }
 void Land() { land(); }
 void Flap(int a) { pf.PartialFlap(a); }
}

MechFlier

ShowFramework

Flier

ShowDirector

<<personifies>>

PartialFlier

personality PartialFlier {
 void PartialFlap(int a) { Flap(a);}
 di void Flap(int a);
}

Show_TakeoffAndLandFramework

Figure 18: Composing two frameworks intrusively

Figure 19 shows our plane application using this composed framework. Notice how we

make use of the fact that we can selectively use the first half of the composed framework

(for our WaterPlane) and the entire framework for our Boeing plane. The underlying

71

assumption is, of course, that B747 planes will contain BWheel classes. We thus need to

personify LandGear at the BWheel class and take care of the “rest” of the original Flier

interface at the B747 class (by personifying PartialFlier).

PlaneApp

Plane

B747 WaterPlane

Wheels

class Plane { ... }
class B747 extends Plane,
 personifies PartialFlier {
 ...
 void Flap(int a) { ... }
}
class WaterPlane extends Plane,
 personifies Flier {
 ...
 void Takeoff() { ... }
 void Flap(int a) { ... }
 void Land() { ... }
}
class Wheels { ... }
class BWheel extends Wheels,
 personifies LandGear {
 ...
 void servoOn() { ... }
 void servoMove() { ... }
 void servoOff() { ... }
}
class WWheel extends Wheels {...}

BWheel WWheel

Partial
Flier Flier LandGear

do_show()

Show_TakeoffAndLandFramework

Figure 19: The plane application using the composed framework

Delegating Composition to the Application’s Code

The previous solution for composing frameworks using personalities involve intrusive

modifications to the original frameworks and effectively produces a brand new composed

framework. For cases where changes to the original frameworks are not possible, or when it

is desirable to keep the original frameworks “intact” (in order, for instance, to automatically

install new versions or patches) then we can delay the composition infrastructure until the

client makes use of the framework. This option will undoubtedly require more effort from

the application developer, but it keeps the two (or more) frameworks being composed

relatively isolated from each other.

To continue our running example, what we would need is to have all Planes personify

Fliers. The WaterPlane, since it does not really have landing gear, will implement all the

72

Flier-required methods. The B747, on the other hand, can make use of the

TakeoffAndLandFramework to implement that behavior. Since we are following a

delegation model, all we really need to do is make sure that the B747 class “has” an instance

of the TakeoffAndLandFramework and can invoke it’s high-level operations (that is,

takeoff() and land()). We can then simply adapt the Flier’s requirements to these

functions. However, our picture would be only halfway complete, since for the

TakeoffAndLandFramework to work we need to personify its own hotspots. We do this

much in the same way as we did it in the previous approach. Figure 20 depicts the situation

and presents the pseudo-code.

PlaneApp

Plane

B747 WaterPlane

Wheels

class Plane personifies Flier {
 ...
 void Takeoff() {}
 void Land() {}
 void Flap(int a) {}
}
class B747 extends Plane {
 MechFlier flier = ...;
 void Takeoff() { flier.takeoff(); }
 void Land() { flier.land(); }
 void Flap(int a) { ... }
}
class WaterPlane extends Plane {
 ...
 void Takeoff() { ... }
 void Flap(int a) { ... }
 void Land() { ... }
}
class Wheels { ... }
class BWheel extends Wheels,
 personifies LandGear {
 ...
 void servoOn() { ... }
 void servoMove() { ... }
 void servoOff() { ... }
}
class WWheel extends Wheels {...}

BWheel WWheel

 Flier

LandGear

do_show()

ShowFramework

takeoff()
land()

TakeoffAndLand
Framework

Figure 20: The Plane Application using two side-by-side frameworks

There are several items worth noticing in the above implementation. First, the two

frameworks are kept separate. Second, the B747 class contains a reference to the

MechFlier object within the TakeoffAndLandFramework instance. Third, the details

on how to construct the BWheel objects, how to pass them to the framework are not

73

shown. Fourth, the application developer needs to hand-write all the delegation code (in the

B747 class).

While this second alternative to using multiple frameworks at different levels of abstraction

in the same application might seem more problematic, it actually is a little bit cleaner from an

architecture perspective. Not only are the two frameworks separated but also the connection

between them is in the control of the application developer, who can solve minor

“impedance mismatchs” between what one provides and what the other expects. The

previous approach, on the other hand, requires an almost perfect correspondence in syntax

and semantics for the automatic compositor to work. Also, as shown in the example, the

previous approach might lead to a creation of artificial personalities to encapsulate the bits of

behavior from the higher-level framework that were not provided by the lower-level

framework and thus need to be passed along to the application for implementation.

Regardless of which method we select, the use of Personalities as the mediators between

frameworks and applications allows us greater flexibility than traditional mechanisms. We

believe that building a compositor as outlined in the preceding section is fairly simple and

would constitute a useful tool for framework composition.

OTHER COLLABORATION-BASED WORK

Personalities are related to, and can be used in conjunction with, other ideas for

encapsulating behavior at a larger granularity. Techniques such as Adaptive Plug-n-Play

Components (APPCs) [Mezini98] and Class Graph Views (CGVs) [Ovlinger98] attempt to

model behavior at a larger scale than that of personalities and can make use of the

Personalities concept. In a sense, all these techniques are equivalent to frameworks and thus

the Personalities concept can be used for embodying the contract or hotspot between them

and the application code.

The purpose of an APPC is to encapsulate a slice of behavior. It essentially encapsulates one

sequence interaction diagram. APPCs are similar in concept to frameworks, though they

74

differ substantially in their expressiveness and adaptability. An APPC has an entry point

called the main entry method call. From that single method call, a number of interactions

between different classes might take place. APPCs can be composed and they of course need

to be applied to an application in order for them to “execute”.

The application ties into the APPC through something similar to the hotspot concept in

framework technology [Johnson97]. We propose using Personalities as the glue between the

APPC and the application, or between two APPCs. Since we will need one APPC per

implementation of a downstream interface method, Personalities’ capability of easily multiply

personifying several classes becomes essential.

CGVs are another approach for specifying different views on an application’s class diagram.

These views encapsulate behavior much in the same way as APPCs do. CGVs define a

concept that is somewhat similar, at least in structure, to a personality. It is called a class

definition and it contains both behavior methods and map methods. These are analogous to a

personality’s upstream and downstream interface methods, respectively. We believe that a

good way to merge the two technologies would be to replace class definitions by

personalities.

75

Chapter 6

FUTURE WORK

In this chapter we will present some of our ideas for future research work. We believe most

of these to be attainable, and of practical use to software engineers.

PERFORMANCE RANGES OR GUARANTEES

An early version of this work was presented at a workshop about pragmatic issues in

Framework technology at OOPSLA ’98. The idea of using of personalities as the interface

layer between different frameworks was well received. Some suggestions were made to

incorporate more information in the downstream interface specifications. More specifically,

items such as memory requirements, average and worst execution speed, and scalability

expectations would be very useful when application developer set out to use a framework

through the use of Personalities.

While we wholeheartedly adhere to the intention of the workshop participants, we must note

that we know of no way of programmatically verifying that a downstream implementation is

within certain specified semantic ranges. Therefore, we must once again put our trust on the

programmer.

MAPPING AND PARAMETER CONVERSION

When a personifying class wants to attach to a personality, it needs to define all the functions

in that personality’s downstream interface. This is usually not a problem when we are dealing

with brand-new applications but might become cumbersome if we have an existent

application that we are extending or enhancing. For example, we might already have a Zoo

76

application but, after having added a theme park to our Zoo, we decided to purchase the

ShowFramework for implementing the shows in our application.

In such an environment, we might have classes that can already provide the functionality

required by a personality’s downstream interface. However, there might be a mismatch in

these functions name or, more generically, their signature. For example, if we were working

for a space agency, we might have a class such as the one shown in Code Sample 16. If we

wanted to have this class personify Flier, we shouldn’t need to define Takeoff(),

Ascend(), etc. so that they simply delegate to the respective SpaceShuttle methods.

class SpaceShuttle {
 void EngageRockets() { ... }
 void ExitAtmosphere() { ... }
 void Orbit(int x, int y) { ... }
 void EnterAtmosphere() { ... }
 void Land() { ... }
 boolean ThereYet(int x, int y) { ... }
}

Code Sample 16: SpaceShuttle class

A simple name mapping mechanism would remove the need for these artifices to be created.

Assuming the mismatch is only in the method name, we could very easily define a mapping

from each of the personality’s downstream interface methods to the corresponding

personifying class methods. The Personalities/J compiler could then automatically insert the

delegation code as appropriate. Code Sample 17 shows one possible language extension to

accommodate this mapping. Notice that neither Land() nor ThereYet() are mentioned

in the map since they have the exact same signatures as the personality requires and

therefore are handled by the “default” case.

class SpaceShuttle personifies Flier
 with EngageRockets = Takeoff,
 ExitAtmosphere = Ascend,
 Orbit = Flap,
 EnterAtmosphere = Descend
{
 void EngageRockets() { ... }
 void ExitAtmosphere() { ... }
 void Orbit(int x, int y) { ... }
 void EnterAtmosphere() { ... }
 void Land() { ... }
 boolean ThereYet(int x, int y) { ... }
}

Code Sample 17: SpaceShuttle class with name-mapped personification

77

Even such a simple mapping mechanism would also make it easier for a new class to

personify two or more personalities with semantically equivalent downstream interface

methods. For instance, if one personality calls for a SaveToDB() function and a different

one calls for PersistYourself(), they both can be mapped to the same implementation

code without having to create two implementations and having to explicitly delegate from

one to the other.

So far, we have only considered the case where the only mismatch between the personality

requirements and the existent class were the names of the methods providing the behavior.

What about slight differences in parameters? We can extend this simple mapping to

accommodate minor semantic differences. If, for instance, you have purchased your

ordering system and your data collection system from different vendors, you might get

personalities that speak about the same ideas but in slightly different terms. Code Sample 18

shows one possible situation in which two different personality providers have developed

their interfaces using different measurement systems. We call these two personalities

semantically equivalent but syntactically different, or SEBSD for short.

// from Vendor A (in Argentina, for instance)
personality FruitProducer {
 ...
 di boolean CheckStockHas(double kilograms);
}

// from Vendor B (in the US, for instance)
personality FreezerUser {
 ...
 di boolean ValidateProdQuant(double pounds);
}

Code Sample 18: Two SEBSD personalities

In such a case the original mapping approach would not work since there’s a unit conversion

that needs to take place in between. Thus, the application developer needs to both do the

conversion and also delegate. Code Sample 19 shows one possible class that personifies both

personalities and performs this conversion and delegation.

78

class TheRedAppleInc extends AppleCo
 personifies FruitProducer, FreezerUser
{
 ...
 public boolean CheckStockHas(double kilograms) {
 // behavior is implemented in metric system
 }
 public boolean ValidateProdQuant(double pounds) {
 return CheckStockHas(pounds * 0.454);
 }
}

Code Sample 19: Personifying two SEBSD personalities without parameter conversion

The addition of some new syntax and compiler support to provide “on-the-fly” parameter

conversion would allow these problems to be overcome. Code Sample 20 shows what the

client code would look like with the new syntax.

class TheRedAppleInc extends AppleCo
 personifies FruitProducer, FreezerUser
 with CheckStockHas = ValidateProdQuant(<pounds>*2.2)
{
 ...
 boolean CheckStockHas(double kilograms) { ... }
 // ValidateProdQuant needs not be implemented at all
}

Code Sample 20: Personifying two SEBSD personalities with parameter conversion

INHERITANCE OF PERSONALITIES

Providing extensibility of personalities via inheritance seems a good way to specialize a given

personality and reduce the requirements on the implementing application. In such a context,

we would usually have a higher-level personality and a lower-level personality that provides

the downstream implementation for the first one and in turn requires an even lower-level,

higher granularity implementation from the application.

Extending personalities in such a way would achieve the reduction of the level of abstraction

since as an application developer you might not be ready to implement certain personality’s

downstream interface (i.e. it might be too high-level for you) but you might know how to

deal with lower-level problems. In such a case, we envision a middle behavior layer (that is,

another personality) that would simply provide “generic” behavior for the higher level

personality and reduce the abstraction or complexity on the downstream interface it requires

79

from clients. This extension can be viewed as triangle, with abstraction decreasing as we

move down while granularity increases, as shown in Figure 21.

Flier

MechanicalFlier

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Abstraction

+

-

Granularity

Figure 21: Inheritance of Personalities w.r.t. abstraction and granularity

Inheritance of personalities can keep the exact same semantics as in Java inheritance. A

MechanicalFlier personality can extend a Flier personality as shown in Code Sample

21 (details have been omitted and the code might not be representative of a real plane, but

does present the difference in abstraction and granularity that we have mentioned before).

personality MechanicFlier extends Flier
{
 void TakeOff() {
 gotoRunway();
 waitForClearance();
 speedUp();
 increaseFlaps();
 bringLandingGearUp();
 }
 void Ascend() { ... }
 void FlapTowards(int x, int y) { ... }
 boolean ThereYet(int x, int y) { ... }
 void Descend() { ... }
 void Land() { ... }
 di void gotoRunway();
 di void waitForClearance();
 di void speedUp();
 di void increaseFlaps();
 di bringLandingGearUp();
 ...
}

Code Sample 21: MechanicFlier extends Flier

80

Notice that this MechanicFlier is different from that we presented in our discussion

about frameworks, which we termed MechFlier. MechanicFlier implements its

behavior (basically Flier’s downstream interface) without interacting with other classes. In

a sense, it is a stand-alone unit of behavior, just as Flier. MechFlier, on the other hand,

is part of a bigger framework and might require complex collaborations to carry out its

behavior. The names have been purposely made similar to bring attention to the fact that

while they both “do the same thing” they are not similar in terms of their requirements on

the software environment.

COMPOSITION OF PERSONALITIES

We have explored composition of frameworks and how Personalities help ease that process

in previous sections. Along the same ideas we could think of composing just the

personalities themselves. It would be useful to take two complementary personalities and

generate a third one. For example, if we had our Flier personality and we purchase an

Acrobatic personality, we would be interested in composing the two to generate an

AcrobaticFlier personality that would have the Flier behavior but with an

Acrobatic “flavor”.

An application would use such a composed personality by providing an implementation for

a subset of the union of the downstream interfaces of the original personalities. However,

we still need glue code to make it all work together. The Flier personality has very specific

downstream interface requirements. Acrobatic, by the same token, might require different

methods from the personifying class. We believe that in order for the composition to

succeed we will need a third entity (possibly a class) that would personify both personalities

being composed, provide a generic implementation of one using the other, and generate a

new personality for the composed behavior requiring the minimum amount of behavior

from the end-user application as possible.

81

In our hypothetical example, this means that this “composer” class will need to personify

Flier and make use of Acrobatic’s upstream interface to make sure that all the behavior

of a flier can be carried out doing rolls, loops, free-falls, etc. This is not a simple problem

because right away we notice an asymmetry in the composition, since one of the

personalities will “dominate” the behavior of the composed one. In this particular case, the

Flier personality dominates since Acrobatic is merely an “adjective” to Flier’s

behavior. Ways for specifying these dependencies as well as for automatically generating the

composition code remain a topic of current research.

82

Chapter 7

WHERE HAVE WE SEEN THIS BEFORE?

Role modeling in the object-oriented world has traditionally been an area of active research.

Therefore, there are many works that have some similarities with the ideas presented in this

thesis. We explore the different approaches and study how they differ from Personalities.

USING DELEGATION

One category of related works includes approaches that are based on using delegation to

emulate modeling roles an object may play during its life, such as the work by LaLonde et al.

on Exemplar-Based Smalltalk [LaLonde86] and the work by Gottlob et al. on extending

object-oriented systems with roles [Gottlob96]. Both approaches support two kinds of

hierarchies: class and role hierarchies (called exemplars in [LaLonde86]). The main focus of

these works is, however, on supporting dynamic modifications of an object’s behavior, as it

undertakes/cancels certain roles and not on explicitly supporting functional decomposition.

Artifacts that model roles, or exemplars, are strongly bound to a certain class in the

inheritance hierarchy. As a result, it is not possible to apply the same behavior to different

unrelated classes, as it is the case with, e.g., the Walker personality being applicable to both

Ants and Cows. Again, because of the focus on supporting evolving objects, there are no

equivalent notions to the upstream and downstream interfaces of the Personalities.

RELAXING INHERITANCE

On the other side, there are several works aimed at improving the expressiveness of the

inheritance structure by relaxing the class-subclass relationships that could also support

modeling stand-alone behavior that can be reused in several scenarios. This category includes

the work on mixin-based inheritance [Bracha90, Bracha92], contracts [Holland93], mixin-methods

83

[Lucas94], MixedJava [Flatt98], Rondo [Mezini98], and context relationship [Seiter98]. These

works share the fact that variations on a base behavior are modeled in stand alone artifacts

called mixins in [Bracha90, Bracha92] and [Flatt98], contracts in [Holland93], mixin-methods

in [Lucas94], adjustments in [Mezini98], and context objects in [Seiter98]. These artifacts do

not commit to any base behavior when defined. Rather, they refer to the base behavior by

means of an (unbound) super parameter and the self reference. The individual approaches

differ from each other on two main points: (1) the level at which the variation is specified –

object vs. class level, and, (2) the time when variations can be applied – dynamically vs.

statically.

From the perspective of this paper, the important point is that the variations are not coupled

to a static inheritance hierarchy as with standard inheritance. One could use mixins to model

high-level reusable functions, since classes and mixins can be freely arranged in inheritance

chains. However, these approaches are lower-level with regard to modeling high-level

popular functions as compared to Personalities. None of them provides for guaranteed

semantics of the popular behaviors and for declaring the interface expected from the

personifying classes. However, they provide flexible behavior composition that could be

used to implement Personalities instead of using delegation. In particular, Rondo and the

context relationship approaches could be used in our future work on fully dynamic

Personalities.

THE VISITOR PATTERN

The work presented in [Krishnamurthi98] also considers the need for synthesizing object-

oriented and functional decompositions. The visitor pattern [Gamma94] is considered as a

technique for filling the gap. The visitor pattern could be used in our running example, as

follows. First, each popular behavior will be modeled in a separate visitor class, with the

individual visitor classes all being subclasses of an abstract Visitor class. The implementation

of the popular behavior would be encoded in visit() messages. All animals must

understand an accept() message taking a visitor object as a parameter. When the

84

accept() message is invoked on an animal object with a visitor as a parameter, the animal

object will invoke visit() to the visitor parameter, passing itself along the invocation.

Thus a client wanting to invoke a popular function on a certain animal would create an

instance of the visitor class for this popular function and call accept() on the animal with

the visitor as a parameter.

There is a severe problem with this approach related to the fact that visitors are normal

classes and thus do not have any notion of the downstream interface. Each visitor needs to

somehow declare to which types its popular behavior applies. It can not simply accept an

object of the most general type Animal as the parameter of its visit method, since the

compiler in a strongly typed language like Java would complain when “downstream“

functions are applied to this object within the micro-framework of the popular function. In

absence of a real downstream interface, each concrete visitor class would implement as many

different visit() messages as there are concrete animal classes to which the popular

behavior encoded by the visitor applies. For instance, there will be a visitor class for the

Walker behavior, say WalkerVisitor. This will have a different visit() methods for

Cow, Penguin, Ant and Locust, although the implementations of these messages are the

same – each embodying the same micro-framework of the upstream message Walk() in

the Walker Personality. Not only is this solution awkward, but it also damages reusability,

since popular functions are still strongly coupled to the data hierarchy. Adding new animal

classes (data abstractions) and declaring them to personify an existing personality is

impossible without changing the implementation of the popular functions.

SUBJECT-ORIENTED PROGRAMMING

The work on subject-oriented programming [Harrison93] aims at enabling the construction of

object-oriented software as a sequence of collaborating applications, each providing its own

subjective view of the domain to be modeled, and defined independently from the others. A

subject is a collection of class fragments with each fragment providing only one subjective

view of the “whole“ data abstraction captured by the class. Personalities can serve for

85

modeling these fragments, especially when enhanced with mechanisms for composing them

that would enable to model the composition of fragments into subjects and of individual

subjects into higher-level subjects.

ADAPTIVE PROGRAMMING

In Karl Lieberherr’s work, behavior is described by propagation patterns (in Demeter/C++

[Lieberherr96]) or adaptive methods (in Demeter/Java [Lieberherr97]), separate from

specific classes. This separately specified behavior is later reused in many different class

structures. Propagation patterns (or adaptive methods) are similar in spirit to personalities,

they specify behavior for a family of classes and they both need to be mapped into specific

classes. However, both propagation patterns and adaptive methods don't enforce the laws of

personalities as described in this paper.

THE RAPIDE CONNECTION

Our concept of upstream and downstream interfaces is very similar in spirit to that of

provided and required interfaces in [Luckham95]. However, required interfaces refer to other

program modules (ie. other interfaces), whereas a personality’s downstream interface refers

to a class that is part of the personified object itself. Furthermore, the different functions in

the required set can be serviced from different modules in a system, whereas only one class

must implement the entire downstream interface. We have purposely kept a different

nomenclature to emphasize the fact that [Luckham95] aims at defining an architecture

whereas personalities work at a much smaller (class) granularity.

86

Chapter 7

CONCLUDING REMARKS

WHAT WE SAID WE WERE GOING TO SAY

The original motivation for this work was very pragmatic. After using Java for a while to

build industrial-strength software applications we started to dislike the fact that some of our

tried-and-true programming practices (e.g. souped-up template-method pattern [Gamma95])

were not easily expressed because of Java’s lack of multiple inheritance support coupled with

the constraints imposed on interfaces. We thought then about a simple extension to the

language to simply “mimic” multiple inheritance. Little did we know that we were going to

get into roles, frameworks, and all kinds of other neat stuff.

WHAT WE ACTUALLY SAID

We have presented a new concept, Personalities, that serves to encapsulate what traditionally

has been called a Role. Personalities present several benefits to software engineers, including:

• Mimicking multiple-inheritance for behavior encapsulation

• Implementation of the template-method pattern [Gamma95], with substantial

semantic additions to make certain that the behavior remains encapsulated.

• Grouping of a set of upstream methods (a.k.a template-methods) into one cohesive

collection to give it a specified semantics and identity in the software developer’s

arsenal.

• Automatic support for object-migration when using dynamic personalities.

87

Finally, we contrasted Personalities with the large amount of previous works in this area,

explaining the differences between those approaches and this one.

WHAT GOOD IT DID US

We consider personalities merely just an evolutionary step towards better support for role

modeling in programming languages. A simple extension to the language yielded a number

of interesting possibilities. We conscientiously decided to focus on the theoretical and/or

practical aspects of the Personalities idea rather than in the implementation details. However,

the Personalities implementation in terms of the Java programming language turned out to

be a good example of the use of Design Patterns.

As expected, Personalities play well with Frameworks. Even though it would seem obvious,

since Personalities are supposed to be embodiments of “micro-frameworks”, the realization

that Personalities can readily replace hotspots and bring something to the mix was a

welcomed one. The Personalities concept was very well received at a workshop about

pragmatic issues in Framework technology at OOPSLA earlier this year, which provided us

with a lot of encouragement.

The contributions of this work are manifold and are detailed earlier in this chapter. In

closing, however, we would like to point out that we believe Personalities to be just the tip

of the iceberg in the arena of role-modeling in object-oriented design. We have easily found

a lot of synergy between personalities and other approaches which leads us to believe that

the research community as a whole might be converging towards a more sensible approach

to object-oriented design. We hope that Personalities have added some clarity at the micro-

design level.

BIBLIOGRAPHY

[Andersen92] Egil Andersen, Trygve Reenskaug. System Design by Composing Structures

of Interacting Objects. In Proceedings of European Conference on Object-Oriented Programming

(ECOOP) 1992. Springer-Verlag, pp. 131-152.

[Arnold97] Ken Arnold, James Gosling. The Java Programming Language, Second Edition.

Addison-Wesley, December 1997.

 [Bellin97] David Bellin, Susan Suchman Simone. The CRC Card Book. Addison-Wesley,

1997.

[Blando98] Luis Blando, Karl Lieberherr, Mira Mezini. Modeling Behavior with

Personalities. Technical Report: NU-CCS-98-08, Northeastern University, August 1998.

[Booch94] Grady Booch. Object-Oriented Analysis and Design with Applications. The

Benjamin/Cummings Publishing Company, Inc., 1994.

[Bracha90] Gilad Bracha, William Cook. Mixin-based Inheritance. In Proceedings of the ACM

Conference on Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA)

1990.

[Bracha92] Gilad Bracha, Gary Lindstrom. Modularity meets Inheritance. In Proceedings of

IEEE Computer Society International Conference on Computer Languages (Washington, DC,

April 1992). IEEE Computer Society, pp. 282-290.

[Flatt98] Matthew Flatt, Shriram Krishnamurthi, Matthias Felleisen. Classes and Mixins. In

Proceedings of the 1998 Principles of Programming Languages (POPL) Conference. San Diego, CA,

January 1998.

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Software. Addison-Wesley, 1994.

89

[Gottlob96] Georg Gottlob, Michael Schrefl, Brigitte Roeck. Extending Object-Oriented

Systems with Roles. In ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

[Harrison93] William Harrison, Harold Ossher. Subject-Oriented Programming (A

Critique of Pure Objects). In Proceedings of the ACM Conference on Object-Oriented

Programming: Systems, Languages, and Applications (OOPSLA) 1993.

[Holland93] Ian Holland. The Design and Representation of Object-Oriented

Components. PhD Thesis. Northeastern University, 1993.

[Jacobson92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Övergaard.

Object-Oriented Software Engineering: A Use Case Driven Approach. Addison Wesley,

1992.

[Johnson97] Ralph Johnson. Frameworks = (Components + Patterns). In Communications

of the ACM, Vol. 40, No. 10. October 1997.

[Krishnamurthi98] Shriram Krishnamurthi, Matthias Felleisen, Daniel Friedman.

Synthesizing Object-Oriented and Functional Design to Promote Reuse. In Proceedings of

ECOOP ’98. Lecture Notes on Computer Science, Springer Verlag, 1998.

[LaLonde86] Wilf R. LaLonde, Dave Thomas, John Pugh. An Exemplar-Based Smalltalk.

In Proceedings of OOPSLA ’86. ACM Sigplan Notices, Vol. 21, No. 11, pp. 322-330.

[Lieberherr96] Karl Lieberherr. Adaptive Object-Oriented Software: The Demeter Method

with Propagation Patterns. PWS Publishing Company, Boston, 1996.

[Lieberherr97] Karl Lieberherr, Doug Orleans. Preventive Program Maintenance in

Demeter/Java (Research Demonstration). In Proceedings of ICSE ’97. ACM Press, pp.

604-065. 1997.

90

[Lucas94] Carine Lucas, Patrick Steyaert. Modular Inheritance of Objects Through Mixin-

Methods. In Proceedings of the 1994 Joint Modular Languages Conference (JMLC). Springer-

Verlag, pp. 273-282.

[Luckham95] David Luckham, James Vera, Sigurd Meldal. Three Concepts of System

Architecture. Stanford University Technical Report, CSL-TR-95-674, July 1995.

[Meyer88] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall

International Series in Computer Science, 1988.

[Mezini97] Mira Mezini. Variation-Oriented Programming Beyond Classes and Inheritance.

PhD Thesis, University of Siegen, 1997.

[Mezini98] Mira Mezini, Karl Lieberherr. Adaptive Plug-and-Play Components for

Evolutionary Software Development. In Proceedings of ACM Annual Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA) 1998.

[OMG92] Object Management Architecture Guide. OMG Document 92.11.1, Object

Management Group, 1992.

[Ovlinger98] Johan Ovlinger, Karl Lieberherr. Class Graph Views. Technical Report: NU-

CCS-98-07, Northeastern University, August 1998.

[Rumbaugh91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[Seiter98] Linda Seiter, Jeng Palsberg, Karl Lieberherr. Evolution of Object Behavior

Using Context Relations. In IEEE Transactions on Software Engineering. Vol. 24, No. 1,

January 1998, pp. 79-92.

[Wieringa94] Roel Wieringa, Wiebren de Jonge, Paul Spruit. Using Dynamic Classes and

Role Classes to Model Object Migration. Theory and Practice of Object Systems, Vol 1(1), pp.

61-83, 1995.

91

[Wirfs90] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing Object-

Oriented Software. Prentice-Hall, 1990.

92

APPENDIX A – A COMPLETE EXAMPLE

This appendix presents the implementation for the running example we have used in this

thesis. The application itself is very simplistic, but does demonstrate the different

characteristics of the Personalities concept. We present implementations for both the static

and the dynamic versions.

THE STATIC VERSION

THE .PJ FILES FOR THE ANIMAL HIERARCHY

// Animal.pj
public class Animal
 personifies Tracer
{
 private String name;
 private Integer code;
 void setName(String n) { name = n;}
 String getName() { return name; }
 void setCode(Integer i) { code = i;}
 Integer getCode() { return code; }
 // --- for Tracer
 // (nothing in its DI)
}
//=======================================
// Mammal.pj
public class Mammal
 extends Animal
{
 public void Nurse() {
 trace("Mammal.Nurse()"); }
}
//=======================================
// Oviparous.pj
public class Oviparous
 extends Animal
{
 public void LayEggs() {
 trace("Oviparous.LayEggs()"); }
}
//=======================================
// Pelican.pj
public class Pelican
 extends Oviparous
 personifies Flier, Walker
{
 // --- for Flier
 void Takeoff() {
 trace("Pelican.Takeoff():"); }
 void Ascend() {

 trace("Pelican.Ascend()"); }
 boolean ThereYet(int x, int y) {
 trace("Pelican.ThereYet()");
 return false;
 }
 void FlapTowards(int x, int y) {
 trace("Pelican.FlapTowards()"); }
 void Descend() {
 trace("Pelican.Descend():"); }
 void Land() {
 trace("Pelican.Land()"); }
 // --- for Walker
 void Prepare() {
 trace("Pelican.Prepare()"); }
 int NumberOfFeet() {
 trace("Pelican.NumberOfFeet()");
 return 2;
 }
 void MoveFoot(int feetno) {
 trace("Pelican.MoveFoot()"); }
 void Stabilize() {
 trace("Pelican.Stabilize()"); }
 void AtEase() {
 trace("Pelican.AtEase()"); }
}
//=======================================
// Bat.pj
public class Bat
 extends Mammal
 personifies Flier
{
 // di implementation for Flier -------
 void Takeoff() {
 trace("Bat.Takeoff():"); }
 void Ascend() {
 trace("Bat.Ascend()"); }
 boolean ThereYet(int x, int y) {
 trace("Bat.ThereYet()");
 return true;
 }

93

 void FlapTowards(int x, int y) {
 trace("Bat.FlapTowards()"); }
 void Descend() {
 trace("Bat.Descend():"); }
 void Land() {
 trace("Bat.Land()"); }
}
//=======================================
// Whale.pj
public class Whale
 extends Mammal
 personifies Swimmer, Jumper
{
 int depth;
 int swam_distance;
 public Whale() {
 depth = 0;
 swam_distance = 0;
 }
 private void Propel() {
 swam_distance++; }
 // --- for Swimmer
 void JumpInTheWater() {
 trace("Whale.JumpInTheWater()"); }
 void Submerge() {
 trace("Whale.Submerge()");
 depth++;
 }
 void MoveFin() {
 trace("Whale.MoveFin()");
 Propel();
 }
 void Rise() {
 trace("Whale.Rise()");
 depth--;
 }
 void JumpOutOfTheWater() {
 trace("Whale.JumpOutOfTheWater()"); }
 // --- for Jumper
 boolean CheckDistance(int x, int y) {
 trace("Whale.CheckDistance()");
 return true;
 }
 void SprintTo(int x, int y) {
 trace("Whale.SprintTo()"); }
 void LiftOff(int alt) {

 trace("Whale.LiftOff()"); }
 void Land() {
 trace("Whale.Land()"); }
}
//=======================================
// SeaLion.pj
public class SeaLion
 extends Mammal
 personifies Walker,Jumper,Swimmer
{
 // --- for Walker
 void Prepare() {
 trace("SeaLion.Prepare()"); }
 int NumberOfFeet() {
 trace("SeaLion.NumberOfFeet()");
 return 2;
 }
 void MoveFoot(int feetno) {
 trace("SeaLion.MoveFoot()"); }
 void Stabilize() {
 trace("SeaLion.Stabilize()"); }
 void AtEase() {
 trace("SeaLion.AtEase()"); }
 // --- for Swimmer
 void JumpInTheWater() {
 trace("SeaLion.JumpInTheWater()"); }
 void Submerge() {
 trace("SeaLion.Submerge()"); }
 void MoveFin() {
 trace("SeaLion.MoveFin()"); }
 void Rise() {
 trace("SeaLion.Rise()"); }
 void JumpOutOfTheWater() {
 trace("SeaLion.JumpOutOfTheWater()");}
 // --- for Jumper
 boolean CheckDistance(int x, int y) {
 trace("SeaLion.CheckDistance()");
 return true;
 }
 void SprintTo(int x, int y) {
 trace("SeaLion.SprintTo()"); }
 void LiftOff(int alt) {
 trace("SeaLion.LiftOff()"); }
 void Land() {
 trace("SeaLion.Land()"); }
}

THE PERSONALITY FILES

// Flier.pj
personality Flier {
 // upstream interface. Must implement.
 public void Fly(int x, int y,
 int altitude) {
 resetMetersFlown();
 Takeoff();
 for (int a=0; a < altitude; a++)
 Ascend();
 while(!ThereYet(x, y))

 FlapTowards(x, y);
 for(int a = altitude; a > 0; a--)
 Descend();
 Land();
 }
 // downstream interface.
 // Don't implement here.
 di void Takeoff();
 di void Ascend();
 di boolean ThereYet(int x, int y);
 di void FlapTowards(int x, int y);

94

 di void Descend();
 di void Land();
 // private functions. Must implement.
 private void resetMetersFlown() {
 meters_flown = 0; }
 // attributes (specific to the role)
 private float meters_flown;
 // constructor (optional)
 Flier() { resetMetersFlown(); }
}
//=======================================
// Swimmer.pj
personality Swimmer
{
 public void Swim(int miles, int depth){
 JumpInTheWater();
 for (int d = 0; d < depth; d++)
 Submerge();
 while ((miles--) > 0) MoveFin();
 for(int d = depth; d > 0; d--)
 Rise();
 JumpOutOfTheWater();
 }
 di void JumpInTheWater();
 di void Submerge();
 di void MoveFin();
 di void Rise();
 di void JumpOutOfTheWater();
}
//=======================================
// Walker.pj
personality Walker
{

 public void Walk(int distance) {
 Prepare();
 while((distance--) > 0) {
 for(int f=0; f<NumberOfFeet(); f++)
 MoveFoot(f);
 Stabilize();
 }
 AtEase();
 }
 // downstream
 di void Prepare();
 di int NumberOfFeet();
 di void MoveFoot(int feetno);
 di void Stabilize();
 di void AtEase();
}
//=======================================
// Jumper.pj
personality Jumper
{
 void Jump(int x, int y, int alt) {
 if (CheckDistance(x, y)) {
 SprintTo(x, y);
 LiftOff(alt);
 Land();
 }
 }
 di boolean CheckDistance(int x, int y);
 di void SprintTo(int x, int y);
 di void LiftOff(int alt);
 di void Land();
}

THE CLIENT USING STATIC PERSONALITIES

// Zoo.pj - [static]
// this is a simple client program,
// unrealistic, but shows the Show()
// methods only dealing with the
// appropriate personality (and its UI)
import java.util.*;
public class Zoo
{
 static public void
 main(String args[]) {
 Vector all_swimmers = new Vector();
 Vector all_fliers = new Vector();
 Vector all_walkers = new Vector();
 Vector all_jumpers = new Vector();

 // some animals are born in our zoo..
 // the client or the factory must
 // know what Personalities are
 // attached to each class.
 SeaLion toto = new SeaLion();
 toto.setName("Toto");
 all_swimmers.addElement(toto);
 all_walkers.addElement(toto);
 all_jumpers.addElement(toto);

 Whale keiko = new Whale();
 keiko.setName("Keiko");
 all_swimmers.addElement(keiko);
 all_jumpers.addElement(keiko);

95

 Bat drac = new Bat();
 drac.setName("Drac");
 all_fliers.addElement(drac);

 // perform the different shows
 for(int i=0; i < all_swimmers.size(); i++)
 PoolShow((Swimmer)all_swimmers.elementAt(i));
 for(int i=0; i < all_walkers.size(); i++)
 FieldShow((Walker)all_walkers.elementAt(i));
 for(int i=0; i < all_jumpers.size(); i++)
 JumpShow ((Jumper)all_jumpers.elementAt(i));
 for(int i=0; i < all_fliers.size(); i++)
 SkyShow ((Flier)all_fliers.elementAt(i));
 }

 static void PoolShow(Swimmer swimmer) {
 System.out.println(" PoolShow with " + swimmer);
 swimmer.Swim(1, 1);
 }
 static void FieldShow(Walker walker) {
 System.out.println(" FieldShow with " + walker);
 walker.Walk(1);
 }
 static void SkyShow(Flier flier) {
 System.out.println(" SkyShow with " + flier);
 flier.Fly(1, 1, 1);
 }
 static void JumpShow(Jumper jumper) {
 System.out.println(" JumpShow with " + jumper);
 jumper.Jump(1, 1, 1);
 }
}

THE GENERATED JAVA CODE

Animal Hierarchy
// Animal.java [static]
import java.util.*;
public class Animal
 implements Tracer
{
 private String name;
 private Integer code;
 public void setName(String n) {name=n;}
 public String getName() {return name;}
 public void setCode(Integer i){code=i;}
 public Integer getCode(){ return code;}
 // ============= for Tracer
 Tracer$Ego $tracer = new Tracer$Ego();
 public void trace(String msg) {
 $tracer.trace(this, msg);
 }
}
/==
// Oviparous.java [static]
public class Oviparous
 extends Animal
{
 public void LayEggs() {
 trace("Oviparous.LayEggs()");
 }
}

/==
// Mammal.java [static]
public class Mammal
 extends Animal
{
 public void Nurse() {
 trace("Mammal.Nurse()");
 }
}
/==
// Pelican.java [static]
import java.util.*;
public class Pelican
 extends Oviparous
 implements Flier, Walker
{
 // for Flier
 public void Takeoff() {
 trace("Pelican.Takeoff():"); }
 public void Ascend() {
 trace("Pelican.Ascend()"); }
 public boolean ThereYet(int x, int y) {
 trace("Pelican.ThereYet()");
 return false;
 }
 public void FlapTowards(int x, int y) {

96

 trace("Pelican.FlapTowards()"); }
 public void Descend() {
 trace("Pelican.Descend():"); }
 public void Land() {
 trace("Pelican.Land()"); }
 // for Walker
 public void Prepare() {
 trace("Pelican.Prepare()"); }
 public int NumberOfFeet() {
 trace("Pelican.NumberOfFeet()");
 return 2;
 }
 public void MoveFoot(int feetno) {
 trace("Pelican.MoveFoot()"); }
 public void Stabilize() {
 trace("Pelican.Stabilize()"); }
 public void AtEase() {
 trace("Pelican.AtEase()"); }
 // ============== for Flier
 Flier$Ego $flier = new Flier$Ego();
 public void Fly(int x, int y,
 int altitude) {
 $flier.Fly(this, x, y, altitude);
 }
 // ============== For Walker
 Walker$Ego $walker = new Walker$Ego();
 public void Walk(int distance) {
 $walker.Walk(this, distance);
 }
}
/==
// Bat.java [static]
import java.util.*;
public class Bat
 extends Mammal
 implements Flier
{
 // di implementation for Flier -----
 public void Takeoff() {
 trace("Bat.Takeoff():"); }
 public void Ascend() {
 trace("Bat.Ascend()"); }
 public boolean ThereYet(int x, int y) {
 trace("Bat.ThereYet()");
 return true;
 }
 public void FlapTowards(int x, int y) {
 trace("Bat.FlapTowards()"); }
 public void Descend() {
 trace("Bat.Descend():"); }
 public void Land() {
 trace("Bat.Land()"); }
 // ============== for Flier
 Flier$Ego $flier = new Flier$Ego();
 public void Fly(int x, int y,
 int altitude) {
 $flier.Fly(this, x, y, altitude);
 }
}
/==
// Whale.java [static]
import java.util.*;
public class Whale
 extends Mammal
 implements Swimmer, Jumper
{

 int depth;
 int swam_distance;
 public Whale() {
 depth = 0;
 swam_distance = 0;
 }
 private void Propel() {
 swam_distance++; }
 // --- for Swimmer
 public void JumpInTheWater() {
 trace("Whale.JumpInTheWater()"); }
 public void Submerge() {
 trace("Whale.Submerge()");
 depth++;
 }
 public void MoveFin() {
 trace("Whale.MoveFin()");
 Propel();
 }
 public void Rise() {
 trace("Whale.Rise()");
 depth--;
 }
 public void JumpOutOfTheWater() {
 trace("Whale.JumpOutOfTheWater()");}
 // --- for Jumper
 public boolean CheckDistance(int x,
 int y) {
 trace("Whale.CheckDistance()");
 return true;
 }
 public void SprintTo(int x, int y) {
 trace("Whale.SprintTo()"); }
 public void LiftOff(int alt) {
 trace("Whale.LiftOff()"); }
 public void Land() {
 trace("Whale.Land()"); }
 // ============== for Swimmer
 Swimmer$Ego $swimmer=new Swimmer$Ego();
 public void Swim(int miles, int depth){
 $swimmer.Swim(this, miles, depth);
 }
 // ============== for Jumper
 Jumper$Ego $jumper = new Jumper$Ego();
 public void Jump(int x, int y, int alt)
 {
 $jumper.Jump(this, x, y, alt);
 }
}
/==
// SeaLion.java [static]
import java.util.*;
public class SeaLion
 extends Mammal
 implements Walker,Jumper,Swimmer
{
 // for Walker
 public void Prepare() {
 trace("SeaLion.Prepare()"); }
 public int NumberOfFeet() {
 trace("SeaLion.NumberOfFeet()");
 return 2;
 }
 public void MoveFoot(int feetno) {
 trace("SeaLion.MoveFoot()"); }
 public void Stabilize() {

97

 trace("SeaLion.Stabilize()"); }
 public void AtEase() {
 trace("SeaLion.AtEase()"); }
 // for Swimmer
 public void JumpInTheWater() {
 trace("SeaLion.JumpInTheWater()");}
 public void Submerge() {
 trace("SeaLion.Submerge()"); }
 public void MoveFin() {
 trace("SeaLion.MoveFin()"); }
 public void Rise() {
 trace("SeaLion.Rise()"); }
 public void JumpOutOfTheWater() {
 trace("SeaLion.JumpOutOfTheWater()");}
 // for Jumper
 public boolean CheckDistance(int x,
 int y) {
 trace("SeaLion.CheckDistance()");
 return true;
 }
 public void SprintTo(int x, int y) {
 trace("SeaLion.SprintTo()"); }

 public void LiftOff(int alt) {
 trace("SeaLion.LiftOff()"); }
 public void Land() {
 trace("SeaLion.Land()"); }
 // ============== for Swimmer
 Swimmer$Ego $swimmer=new Swimmer$Ego();
 public void Swim(int miles, int depth)
 {
 $swimmer.Swim(this, miles, depth);
 }
 // ============== for Walker
 Walker$Ego $walker = new Walker$Ego();
 public void Walk(int distance) {
 $walker.Walk(this, distance);
 }
 // ============== for Jumper
 Jumper$Ego $jumper = new Jumper$Ego();
 public void Jump(int x, int y, int alt)
 {
 $jumper.Jump(this, x, y, alt);
 }
}

Personalities
// Flier.java [static]
interface Flier {
 public void Fly(int x, int y,
 int altitude);
 void Takeoff();
 void Ascend();
 boolean ThereYet(int x, int y);
 void FlapTowards(int x, int y);
 void Descend();
 void Land();
}
/==
// Flier$Ego.java [static]
public class Flier$Ego
{
 // upstream interface. Must implement.
 public void Fly(Flier host, int x,
 int y, int altitude) {
 resetMetersFlown();
 host.Takeoff();
 for (int a=0; a < altitude; a++)
 host.Ascend();
 while(!host.ThereYet(x, y))
 host.FlapTowards(x, y);
 for(int a = altitude; a > 0; a--)
 host.Descend();
 host.Land();
 }
 // private functions. Must implement.
 private void resetMetersFlown() {
 meters_flown = 0;
 }
 // attributes (specific to the role)
 private float meters_flown;
 // constructor (optional)
 Flier$Ego() {
 resetMetersFlown();
 }

}
/==
// Swimmer.java [static]
interface Swimmer
{
 public void Swim(int miles, int depth);
 void JumpInTheWater();
 void Submerge();
 void MoveFin();
 void Rise();
 void JumpOutOfTheWater();
}
/==
// Swimmer$Ego.java [static]
public class Swimmer$Ego
{
 public void Swim(Swimmer host,
 int miles, int depth){
 host.JumpInTheWater();
 for (int d = 0; d < depth; d++)
 host.Submerge();
 while ((miles--) > 0) host.MoveFin();
 for(int d = depth; d > 0; d--)
 host.Rise();
 host.JumpOutOfTheWater();
 }
 public Swimmer$Ego()
 { }
}
/==
// Walker.java [static]
interface Walker
{
 public void Walk(int distance);
 void Prepare();
 int NumberOfFeet();
 void MoveFoot(int feetno);
 void Stabilize();

98

 void AtEase();
}
/==
// Walker$Ego.java [static]
public class Walker$Ego
{
 public void Walk(Walker host,
 int distance) {
 host.Prepare();
 while((distance--) > 0) {
 for(int f = 0;
 f < host.NumberOfFeet(); f++)
 host.MoveFoot(f);
 host.Stabilize();
 }
 host.AtEase();
 }
 public Walker$Ego()
 { }
}
/==
// Jumper.java [static]
interface Jumper

{
 void Jump(int x, int y, int alt);
 boolean CheckDistance(int x, int y);
 void SprintTo(int x, int y);
 void LiftOff(int alt);
 void Land();
}
/==
// Jumper$Ego.java [static]
public class Jumper$Ego
{
 void Jump(Jumper host, int x, int y,
 int alt) {
 if (host.CheckDistance(x, y)) {
 host.SprintTo(x, y);
 host.LiftOff(alt);
 host.Land();
 }
 }
 public Jumper$Ego()
 { }
}

Client Code
// Zoo.java - [static]
// this is a simple client program, unrealistic,
// but shows the Show() methods only dealing with
// the appropriate personality (and its UI)
import java.util.*;
public class Zoo
{
 static public void main(String args[]) {
 Vector all_swimmers = new Vector();
 Vector all_fliers = new Vector();
 Vector all_walkers = new Vector();
 Vector all_jumpers = new Vector();

 // some animals are born in our zoo...
 // notice that the client or the factory
 // must know what Personalities are attached
 // to each class.
 SeaLion toto = new SeaLion();
 toto.setName("Toto");
 all_swimmers.addElement(toto);
 all_walkers.addElement(toto);
 all_jumpers.addElement(toto);

 Whale keiko = new Whale();
 keiko.setName("Keiko");
 all_swimmers.addElement(keiko);
 all_jumpers.addElement(keiko);

 Bat drac = new Bat();
 drac.setName("Drac");
 all_fliers.addElement(drac);

 // perform the different shows
 for(int i=0; i < all_swimmers.size(); i++)
 PoolShow ((Swimmer)all_swimmers.elementAt(i));
 for(int i=0; i < all_walkers.size(); i++)
 FieldShow((Walker)all_walkers.elementAt(i));
 for(int i=0; i < all_jumpers.size(); i++)

99

 JumpShow ((Jumper)all_jumpers.elementAt(i));
 for(int i=0; i < all_fliers.size(); i++)
 SkyShow ((Flier)all_fliers.elementAt(i));
}

 static void PoolShow(Swimmer swimmer) {
 System.out.println(" PoolShow with " + swimmer);
 swimmer.Swim(1, 1);
 }
 static void FieldShow(Walker walker) {
 System.out.println(" FieldShow with " + walker);
 walker.Walk(1);
 }
 static void SkyShow(Flier flier) {
 System.out.println(" SkyShow with " + flier);
 flier.Fly(1, 1, 1);
 }
 static void JumpShow(Jumper jumper) {
 System.out.println(" JumpShow with " + jumper);
 jumper.Jump(1, 1, 1);
 }
}

THE DYNAMIC VERSION

There are no changes needed in either the Animal or the Personalities hierarchy for the

dynamic version. The clients of the personalities, however, do need to change as well as the

generated Java code.

THE CLIENT USING DYNAMIC PERSONALITIES

// Zoo.pj [dynamic]
// this is a simple client program, unrealistic,
// but shows the Show() methods only dealing with
// the appropriate personality (and its UI)
// This is the dynamic version of the client, it
// also does slightly different things.
public class Zoo
{
 static public void main(String args[]) {
 // some animals are born in our zoo...
 SeaLion toto = new SeaLion();
 toto.setName("Toto");
 Whale keiko = new Whale();
 keiko.setName("Keiko");
 Bat drac = new Bat();
 drac.setName("Drac");
 System.out.println("TIME 0 - Zoo is created");

 toto.personify("Tracer");
 keiko.personify("Tracer");
 drac.personify("Tracer");

 pp(toto); pp(keiko); pp(drac);

 // toto and keiko can swim the moment

100

 // they are born. drac, however, can't fly
 keiko.personify("Swimmer");
 toto.personify("Swimmer");

 System.out.println("TIME 1 - animals created,
 Whale and SeaLion swim");
 pp(toto); pp(keiko); pp(drac);

 // they've been just born, but the
 // show must go on anyways...
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);

 // let's pretend time goes on. toto and
 // keiko are getting strong enough to jump
 // also, drac can now fly
 toto.personify("Jumper");
 keiko.personify("Jumper");
 drac.personify("Flier");

 System.out.println("TIME 2 - Whale and SeaLion
 jump, Bat flies");
 pp(toto); pp(keiko); pp(drac);
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);

 // finally, toto can also walk...
 toto.personify("Walker");

 System.out.println("TIME 3 - SeaLion walks");
 pp(toto);
 PerformShow(toto);

 // time goes on, and toto and keiko get old, not
 // strong enough to walk or jump anymore
 toto.forget("Walker");
 toto.forget("Jumper");
 keiko.forget("Jumper");
 System.out.println("TIME 4 - Whale and SeaLion
 forget to walk and jump");
 pp(toto); pp(keiko); pp(drac);
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);
 }

 // master of ceremonies...
 static void PerformShow(Animal animal) {
 System.out.println(" PerformShow with " +
 animal);
 if (animal.personifies("Swimmer"))
 PoolShow((Swimmer)animal);
 if (animal.personifies("Walker"))
 FieldShow((Walker)animal);
 if (animal.personifies("Flier"))
 SkyShow((Flier)animal);
 if (animal.personifies("Jumper"))
 JumpShow((Jumper)animal);
 }
 static void PoolShow(Swimmer swimmer) {
 System.out.println(" PoolShow with " + swimmer);
 swimmer.Swim(1, 1);
 }
 static void FieldShow(Walker walker) {

101

 System.out.println(" FieldShow with " + walker);
 walker.Walk(1);
 }
 static void SkyShow(Flier flier) {
 System.out.println(" SkyShow with " + flier);
 flier.Fly(1, 1, 1);
 }
 static void JumpShow(Jumper jumper) {
 System.out.println(" JumpShow with " + jumper);
 jumper.Jump(1, 1, 1);
 }
 // auxiliary function
 static void pp(Animal a) {
 System.out.println(a.getName() + ": "
 + a.personalities());
 }
}

THE GENERATED JAVA CODE

Animal Hierarchy
// Animal.java [dynamic]
import java.util.*;
public class Animal
 implements Tracer
{
 private String name;
 private Integer code;
 public void setName(String n){ name=n;}
 public String getName() { return name;}
 public void setCode(Integer i){code=i;}
 public Integer getCode(){ return code;}
 // == SHRINK INSERTION -=-=-=-=-=-=-=-
 // == generic for all classes that
 // "personify". The Personalities/J
 // compiler must insert these
 // definitions only once at the
 // class within the hierarchy that
 // is closest to the root, whose
 // ancestors do NOT personify
 // anything, but it personifies
 // something.
 //
 // In this example, the class that
 // fulfills these requirements is
 // the Animal class.
 protected Shrink $shrink= new Shrink();
 public boolean personify(String what)
 { return $shrink.personify(what); }
 public boolean personifies(String what)
 { return $shrink.personifies(what); }
 public boolean forget(String what)
 { return $shrink.forget(what); }
 public boolean canpersonify(String
 what)
 { return $shrink.canpersonify(what); }
 public Vector personalities()
 { return $shrink.personalities(); }
 // == SHRINK INSERTION ENDS =-=-=-=-=-=
 // for Tracer
 Tracer$Ego $tracer=

 new Tracer$Ego($shrink);
 public void trace(String msg) {
 if (personifies("Tracer"))
 $tracer.trace(this, msg);
 }
}
//=======================================
// Oviparous.java [dynamic]
public class Oviparous
 extends Animal
{
 public void LayEggs() {
 trace("Oviparous.LayEggs()");
 }
}
//=======================================
// Mammal.java [dynamic]
public class Mammal
 extends Animal
{
 public void Nurse() {
 trace("Mammal.Nurse()");
 }
}
//=======================================
// Pelican.java [dynamic]
import java.util.*;
public class Pelican
 extends Oviparous
 implements Flier, Walker
{
 // for Flier
 public void Takeoff() {
 trace("Pelican.Takeoff():"); }
 public void Ascend() {
 trace("Pelican.Ascend()"); }
 public boolean ThereYet(int x, int y) {
 trace("Pelican.ThereYet()");
 return false;
 }
 public void FlapTowards(int x, int y) {

102

 trace("Pelican.FlapTowards()"); }
 public void Descend() {
 trace("Pelican.Descend():"); }
 public void Land() {
 trace("Pelican.Land()"); }
 // for Walker
 public void Prepare() {
 trace("Pelican.Prepare()"); }
 public int NumberOfFeet() {
 trace("Pelican.NumberOfFeet()");
 return 2;
 }
 public void MoveFoot(int feetno) {
 trace("Pelican.MoveFoot()"); }
 public void Stabilize() {
 trace("Pelican.Stabilize()"); }
 public void AtEase() {
 trace("Pelican.AtEase()"); }
 // ============== for Flier
 Flier$Ego $flier
 = new Flier$Ego($shrink);
 public void Fly(int x, int y,
 int altitude) {
 if (personifies("Flier"))
 $flier.Fly(this, x, y, altitude);
 }
 // ============== For Walker
 Walker$Ego $walker
 = new Walker$Ego($shrink);
 public void Walk(int distance) {
 if (personifies("Walker"))
 $walker.Walk(this, distance);
 }
}
//=======================================
// Bat.java [dynamic]
import java.util.*;
public class Bat
 extends Mammal
 implements Flier
{
 // for Flier
 public void Takeoff() {
 trace("Bat.Takeoff():"); }
 public void Ascend() {
 trace("Bat.Ascend()"); }
 public boolean ThereYet(int x, int y) {
 trace("Bat.ThereYet()");
 return true;
 }
 public void FlapTowards(int x, int y) {
 trace("Bat.FlapTowards()"); }
 public void Descend() {
 trace("Bat.Descend():"); }
 public void Land() {
 trace("Bat.Land()"); }
 // ============== for Flier
 Flier$Ego $flier
 = new Flier$Ego($shrink);
 public void Fly(int x, int y,
 int altitude) {
 if (personifies("Flier"))
 $flier.Fly(this, x, y, altitude);
 }
}

//=======================================
// Whale.java [dynamic]
import java.util.*;
public class Whale
 extends Mammal
 implements Swimmer, Jumper
{
 int depth;
 int swam_distance;
 public Whale() {
 depth = 0;
 swam_distance = 0;
 }
 private void Propel() {
 swam_distance++; }
 // --- for Swimmer
 public void JumpInTheWater() {
 trace("Whale.JumpInTheWater()"); }
 public void Submerge() {
 trace("Whale.Submerge()");
 depth++;
 }
 public void MoveFin() {
 trace("Whale.MoveFin()");
 Propel();
 }
 public void Rise() {
 trace("Whale.Rise()");
 depth--;
 }
 public void JumpOutOfTheWater() {
 trace("Whale.JumpOutOfTheWater()");}
 // --- for Jumper
 public boolean CheckDistance(int x,
 int y) {
 trace("Whale.CheckDistance()");
 return true;
 }
 public void SprintTo(int x, int y) {
 trace("Whale.SprintTo()"); }
 public void LiftOff(int alt) {
 trace("Whale.LiftOff()"); }
 public void Land() {
 trace("Whale.Land()"); }
 // ============== for Swimmer
 Swimmer$Ego $swimmer
 = new Swimmer$Ego($shrink);
 public void Swim(int miles, int depth){
 if (personifies("Swimmer"))
 $swimmer.Swim(this, miles, depth);
 }
 // ============== for Jumper
 Jumper$Ego $jumper
 = new Jumper$Ego($shrink);
 public void Jump(int x, int y, int alt)
 {
 if (personifies("Jumper"))
 $jumper.Jump(this, x, y, alt);
 }
}
//=======================================
// SeaLion.java [dynamic]
import java.util.*;
public class SeaLion
 extends Mammal
 implements Walker,Jumper,Swimmer

103

{
 // for Walker
 public void Prepare() {
 trace("SeaLion.Prepare()"); }
 public int NumberOfFeet() {
 trace("SeaLion.NumberOfFeet()");
 return 2;
 }
 public void MoveFoot(int feetno) {
 trace("SeaLion.MoveFoot()"); }
 public void Stabilize() {
 trace("SeaLion.Stabilize()"); }
 public void AtEase() {
 trace("SeaLion.AtEase()"); }
 // for Swimmer
 public void JumpInTheWater() {
 trace("SeaLion.JumpInTheWater()");}
 public void Submerge() {
 trace("SeaLion.Submerge()"); }
 public void MoveFin() {
 trace("SeaLion.MoveFin()"); }
 public void Rise() {
 trace("SeaLion.Rise()"); }
 public void JumpOutOfTheWater() {
 trace("SeaLion.JumpOutOfTheWater()");}
 // for Jumper
 public boolean CheckDistance(int x,
 int y) {
 trace("SeaLion.CheckDistance()");
 return true;

 }
 public void SprintTo(int x, int y) {
 trace("SeaLion.SprintTo()"); }
 public void LiftOff(int alt) {
 trace("SeaLion.LiftOff()"); }
 public void Land() {
 trace("SeaLion.Land()"); }
 // ============== for Swimmer
 Swimmer$Ego $swimmer
 = new Swimmer$Ego($shrink);
 public void Swim(int miles, int depth){
 if (personifies("Swimmer"))
 $swimmer.Swim(this, miles, depth);
 }
 // ============== for Walker
 Walker$Ego $walker
 = new Walker$Ego($shrink);
 public void Walk(int distance) {
 if (personifies("Walker"))
 $walker.Walk(this, distance);
 }
 // ============== for Jumper
 Jumper$Ego $jumper
 = new Jumper$Ego($shrink);
 public void Jump(int x, int y, int alt)
 {
 if (personifies("Jumper"))
 $jumper.Jump(this, x, y, alt);
 }
}

Personalities
// Shrink.java [dynamic]
// this class is only generated when the
// Personalities/J compiler is
// generating dynamic personality code.
// It is a fixed implementation of a
// helper class used to maintain the
// personality list for the classes
// within a particular inheritance
// hierarchy.
import java.util.*;
public class Shrink
{
 Vector names = new Vector();
 Vector states = new Vector();

 public void
 register_personality(String p) {
 if (! names.contains(p)) {
 names.addElement(p);
 states.addElement(Boolean.FALSE);
 }
 }
 public boolean
 personify(String p) {
 if (!canpersonify(p)) return false;
 int idx = names.indexOf(p);
 states.setElementAt(Boolean.TRUE,
 idx);
 return true;

 }
 public boolean
 forget(String p) {
 if (!canpersonify(p)) return false;
 int idx = names.indexOf(p);
 states.setElementAt(Boolean.FALSE,
 idx);
 return true;
 }
 public boolean personifies(String p) {
 if (names.contains(p)) {
 int idx = names.indexOf(p);
 return ((Boolean)
 states.elementAt(idx))
 .booleanValue();
 }
 else return false;
 }
 public boolean canpersonify(String p) {
 return names.contains(p);
 }
 public Vector personalities() {
 Vector result = new Vector();
 for (int i=0; i < names.size(); i++)
 if (((Boolean)
 states.elementAt(i))
 .booleanValue())
 result.addElement(names
 .elementAt(i));
 return result;

104

 }
}
//=======================================
// Flier.java [dynamic]
interface Flier {
 public void Fly(int x, int y,
 int altitude);
 void Takeoff();
 void Ascend();
 boolean ThereYet(int x, int y);
 void FlapTowards(int x, int y);
 void Descend();
 void Land();
}
//=======================================
// Flier$Ego.java [dynamic]
public class Flier$Ego
{
 // upstream interface. Must implement.
 public void Fly(Flier host, int x,
 int y, int altitude) {
 resetMetersFlown();
 host.Takeoff();
 for (int a=0; a < altitude; a++)
 host.Ascend();
 while(!host.ThereYet(x, y))
 host.FlapTowards(x, y);
 for(int a = altitude; a > 0; a--)
 host.Descend();
 host.Land();
 }
 // private functions. Must implement.
 private void resetMetersFlown() {
 meters_flown = 0; }
 // attributes (specific to the role)
 private float meters_flown;
 // constructor (optional)
 Flier$Ego(Shrink shrink) {
 resetMetersFlown();
 shrink.register_personality("Flier");
 }
}
//=======================================
// Swimmer.java [dynamic]
interface Swimmer
{
 public void Swim(int miles, int depth);
 void JumpInTheWater();
 void Submerge();
 void MoveFin();
 void Rise();
 void JumpOutOfTheWater();
}
//=======================================
// Swimmer$Ego.java [dynamic]
public class Swimmer$Ego
{
 public void Swim(Swimmer host,
 int miles, int depth){
 host.JumpInTheWater();
 for (int d = 0; d < depth; d++)
 host.Submerge();
 while ((miles--) > 0) host.MoveFin();
 for(int d = depth; d > 0; d--)

 host.Rise();
 host.JumpOutOfTheWater();
 }
 public Swimmer$Ego(Shrink shrink)
 { shrink
 .register_personality("Swimmer"); }
}
//=======================================
// Walker.java [dynamic]
interface Walker
{
 public void Walk(int distance);
 void Prepare();
 int NumberOfFeet();
 void MoveFoot(int feetno);
 void Stabilize();
 void AtEase();
}
//=======================================
// Walker$Ego.java [dynamic]
public class Walker$Ego
{
 public void Walk(Walker host,
 int distance) {
 host.Prepare();
 while((distance--) > 0) {
 for (int f = 0;
 f < host.NumberOfFeet(); f++)
 host.MoveFoot(f);
 host.Stabilize();
 }
 host.AtEase();
 }
 public Walker$Ego(Shrink shrink) {
 shrink
 .register_personality("Walker"); }
}
//=======================================
// Jumper.java [dynamic]
interface Jumper
{
 void Jump(int x, int y, int alt);
 boolean CheckDistance(int x, int y);
 void SprintTo(int x, int y);
 void LiftOff(int alt);
 void Land();
}
//=======================================
// Jumper$Ego.java [dynamic]
public class Jumper$Ego
{
 void Jump(Jumper host, int x,
 int y, int alt) {
 if (host.CheckDistance(x, y)) {
 host.SprintTo(x, y);
 host.LiftOff(alt);
 host.Land();
 }
 }
 public Jumper$Ego(Shrink shrink)
 { shrink
 .register_personality("Jumper"); }
}

105

Client Code
// Zoo.java [dynamic]
// this is a simple client program, unrealistic,
// but shows the Show() methods only dealing with
// the appropriate personality (and its UI)
// This is the dynamic version of the client, it
// also does slightly different things.
public class Zoo
{
 static public void main(String args[]) {
 // some animals are born in our zoo...
 SeaLion toto = new SeaLion();
 toto.setName("Toto");
 Whale keiko = new Whale();
 keiko.setName("Keiko");
 Bat drac = new Bat();
 drac.setName("Drac");
 System.out.println("TIME 0 - Zoo is created");

 toto.personify("Tracer");
 keiko.personify("Tracer");
 drac.personify("Tracer");

 pp(toto); pp(keiko); pp(drac);

 // toto and keiko can swim the moment
 // they are born. drac, however, can't fly
 keiko.personify("Swimmer");
 toto.personify("Swimmer");

 System.out.println("TIME 1 - animals created,
 Whale and SeaLion swim");
 pp(toto); pp(keiko); pp(drac);

 // they've been just born, but the
 // show must go on anyways...
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);

 // let's pretend time goes on. toto and
 // keiko are getting strong enough to jump
 // also, drac can now fly
 toto.personify("Jumper");
 keiko.personify("Jumper");
 drac.personify("Flier");

 System.out.println("TIME 2 - Whale and SeaLion
 jump, Bat flies");
 pp(toto); pp(keiko); pp(drac);
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);

 // finally, toto can also walk...
 toto.personify("Walker");

 System.out.println("TIME 3 - SeaLion walks");
 pp(toto);
 PerformShow(toto);

 // time goes on, and toto and keiko get old, not
 // strong enough to walk or jump anymore
 toto.forget("Walker");

106

 toto.forget("Jumper");
 keiko.forget("Jumper");
 System.out.println("TIME 4 - Whale and SeaLion
 forget to walk and jump");
 pp(toto); pp(keiko); pp(drac);
 PerformShow(toto);
 PerformShow(keiko);
 PerformShow(drac);
 }

 // master of ceremonies...
 static void PerformShow(Animal animal) {
 System.out.println(" PerformShow with " +
 animal);
 if (animal.personifies("Swimmer"))
 PoolShow((Swimmer)animal);
 if (animal.personifies("Walker"))
 FieldShow((Walker)animal);
 if (animal.personifies("Flier"))
 SkyShow((Flier)animal);
 if (animal.personifies("Jumper"))
 JumpShow((Jumper)animal);
 }
 static void PoolShow(Swimmer swimmer) {
 System.out.println(" PoolShow with " + swimmer);
 swimmer.Swim(1, 1);
 }
 static void FieldShow(Walker walker) {
 System.out.println(" FieldShow with " + walker);
 walker.Walk(1);
 }
 static void SkyShow(Flier flier) {
 System.out.println(" SkyShow with " + flier);
 flier.Fly(1, 1, 1);
 }
 static void JumpShow(Jumper jumper) {
 System.out.println(" JumpShow with " + jumper);
 jumper.Jump(1, 1, 1);
 }
 // auxiliary function
 static void pp(Animal a) {
 System.out.println(a.getName() + ": " +
 a.personalities());
 }
}

i On Figure 9, the following “implements” relationships are not shown to keep the diagram

uncluttered: SeaLion implements Walker, Jumper; Whale implements Swimmer; and
Pelican implements Flier.

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF CODE SAMPLES
	ACKNOWLEDGMENTS
	THE DIFFICULT TASK OF MODELING BEHAVIOR
	THE FUNCTIONAL NATURE OF SOFTWARE SYSTEMS
	FINDING OBJECTS AND BEHAVIOR
	WHEN BEHAVIOR MISBEHAVES
	Roles and the Application Domain Functions
	The Problem of Mapping Application Domain Functions to the Class Hierarchy

	ISSUES IN MODELING POPULAR FUNCTIONS
	Pelicans, Whales, and The Virtual Zoo: A Running Example
	Alternatives for Mapping Popular Functions

	MODELING WITH PERSONALITIES
	ANALYSIS AND DESIGN WITH ROLES
	WHAT ARE PERSONALITIES?
	Syntax and Usage
	The Law of Personalities
	No Default Implementation Rule (the need for some class)
	Basic Types Rule (KISS)
	After some debate, we decided to demote this rule to recommendation-level status. Strictly enforcing this rule makes the job of componentizing personalities too difficult, as translation to/from basic types is required at every interface. We strongly rec
	Behavioral Buffer Rule (gotta do something, after all)
	Fixed Popular Behavior Rule (don’t go second-guessing me)
	Implementation Separation Rule (to each its own)
	The Rule That Almost Made It

	DYNAMIC PERSONALITIES
	WHY DO WE EVEN CARE ABOUT THIS?
	WHAT’S WRONG WITH PERSONALITIES “AS-IS”
	Where Static Personalities Have It Right
	Where Static Personalities Fall Short

	DYNAMIC PERSONALITIES
	What We Are Trying To Achieve
	Indecisive Personalities. (Not Fully Dynamic, But Good Enough)
	Fully Dynamic Personalities (The Wonders of Simplifying)
	Method Dispatch in Dynamic Personalities
	Class’ Conformance to a Personality’s DI

	PERSONALITIES/J
	A FEW WORDS ABOUT THE PROGRAMMING ENVIRONMENT
	IMPLEMENTING STATIC PERSONALITIES
	Java and Interfaces
	The Mapping Process
	Using a Class that Personifies
	Mapping to Java

	THE CHANGES FOR DYNAMIC PERSONALITIES
	Personalities’ Protocol
	Client Code Changes
	The Generated Java Code

	PERSONALITIES AND THEIR BIG COUSINS
	FRAMEWORKS AND PERSONALITIES
	Adapting a Framework using Hotspots
	Personalities as Hotspots
	Personalities as Traffic Cops
	Composing Frameworks using Personalities
	Delegating Composition to the Application’s Code

	OTHER COLLABORATION-BASED WORK

	FUTURE WORK
	PERFORMANCE RANGES OR GUARANTEES
	MAPPING AND PARAMETER CONVERSION
	INHERITANCE OF PERSONALITIES
	COMPOSITION OF PERSONALITIES

	WHERE HAVE WE SEEN THIS BEFORE?
	USING DELEGATION
	RELAXING INHERITANCE
	THE VISITOR PATTERN
	SUBJECT-ORIENTED PROGRAMMING
	ADAPTIVE PROGRAMMING
	THE RAPIDE CONNECTION

	CONCLUDING REMARKS
	WHAT WE SAID WE WERE GOING TO SAY
	WHAT WE ACTUALLY SAID
	WHAT GOOD IT DID US

	BIBLIOGRAPHY
	APPENDIX A – A COMPLETE EXAMPLE
	THE STATIC VERSION
	The .pj Files for the Animal Hierarchy
	The Personality Files
	The Client using Static Personalities
	The Generated Java Code
	Animal Hierarchy
	Personalities
	Client Code

	THE DYNAMIC VERSION
	The Client using Dynamic Personalities
	The Generated Java Code
	Animal Hierarchy
	Personalities
	Client Code

