Designing and Programming

with Personalities

Luis Blando

-
) PPN
-
-

Pi geon

TAYO{ .7
‘_,____>< ——————— Y| vl kO){...}

College of Computer Science

Northeastern University

(Lechnical report #BNU-CCS-98-12)

1998

[0 Copyright 1998

Luis Blando

Designing and Programming with Personalities
by

Luis Blando

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

Northeastern University

1998

Supervisory Committee: Karl Lieberherr Mira Mezini

Date: December 2™ 1998.

Northeastern University
Abstract
DESIGNING AND PROGRAMMING WITH PERSONALITIES

by Luis Blando

Decoupling behavior modeling from a specific inheritance hierarchy is one of the challenges
for object-oriented software engineering. The goal is to encapsulate behavior on its own, and
yet be able to freely apply it to a given class structure. We claim that standard object-oriented
languages do not directly address this problem and propose the concept of Personalities as a
design and programming artifice to model stand alone behavior that embodies what we have
termed wicro-framework style of programming. Allowing behavior to stand alone enables its
reuse in different places in an inheritance hierarchy. The micro-framework style helps to
preserve the semantics during reuse. Furthermore, we show how Personalities can help solve
the problem of object migration and how they can easily integrate with frameworks. We present

two different Personalities implementations by extending the Java Programming Language.

TABLE OF CONTENTS

LISE OF FIQUIES ...ttt 8
LiSt OF COUE SAMPIES ..ot 9
THE DIFFICULT TASK OF MODELING BEHAVIOR.......c.ccooiiicccssee s, 11
The Functional Nature of SOftware SYStEMS.........ccccevrirrieriienesees s 11
Finding ODbjects and BENAVIOL ... 13
When Behavior MISDERAVES ... 15
Roles and the Application Domain FUNCLIONScccvvevienienrecese e, 15

The Problem of Mapping Application Domain Functions to the Class Hierarchy... 16

Issues in Modeling Popular FUNCLIONScccceieiriesesssssessessessssssssse s 17
Pelicans, Whales, and The Virtual Zoo: A Running Examplecccocoeveivninninnnn, 17
Alternatives for Mapping Popular FUNCLIONS ... 20

MODELING WITH PERSONALITIEScoooviiiiriseseesissssis s ssssnes 24

Analysis and Design With ROIES..........ccccuiiiiiiiice s 24

What are PersONalitIES?civiiiriiriiee e 25
SYNEAX ANA USAGE ..ottt snes 26
The Law Of PersON@lities.........c.cviriiniiscecees s 31

No Default Implementation Rule (the need for some class)...........ccccovevievinnnn. 32
BasiC TYPES RUIE (KISS) ...cviiicieicecscesss st 32
Behavioral Buffer Rule (gotta do something, after all)...........ccccooevivvininnn. 33
Fixed Popular Behavior Rule (don’t go second-guessing mMe)..........ccccoevrevrrrernns 34
Implementation Separation Rule (to €ach itS OWN)........ccccovvvviiiccciiccecas 34
The Rule That AIMOSt Made It.........ccoiiiii s 35
DYNAMIC PERSONALITIEScooienninissses st sssssssessssnes 36

Why Do We Even Care ADOUL THiS? ... 36

What’'s Wrong with Personalities “AS-1S" ... ssssessssesnnns 38
Where Static Personalities Have 1t Right ... 38

Where Static Personalities Fall SNOITovoeeeeeeeeee ettt 38

DYNamIC PerSONAIILIES........ccciiiieiiiiccei s 39
What We Are Trying TO ACNIEBVE.........covieeceicecees s 40
Indecisive Personalities. (Not Fully Dynamic, But Good Enough)...........ccccovvienne. 41
Fully Dynamic Personalities (The Wonders of Simplifying)ccccoooeviviviiiccnnnen. 42

Method Dispatch in Dynamic Personalities............ccovovreeneninsineiesssenenenns 42
Class’ Conformance to a Personality’s Dl.........ccooennnnnnneneseseses 44
PERSONALITIES/ ..ottt 46

A Few Words About the Programming ENVIronmMentccoccevvveeieeiesnieeniesnennnn, 46

Implementing Static PErsoNalities ..o 46
JaVA AN INTEITACEScviiiec s 46
THe MapPINg PrOCESScvviireiiireiieiiseisseesse sttt ssssesnees 47

Using a Class that Personifies..........ccoviiiiiiiicsieeseessee s 47
MEPPING 10 JAVA.....vuireiiieiiieiie e 49

The Changes for Dynamic Personalities ..o, 55
Personalities’ PrOtOCOL..........coiiiic e 57
Client CoUe CRANGEScovrieiceiceice e 57
The Generated Java COUE.........ccovvierirer e 58

PERSONALITIES AND THEIR BIG COUSINScovviiinnininisssesisssssssssssseeens 62

Frameworks and Personalities ... 62
Adapting a Framework using HOLSPOTS.........ccoevirriiniereseessessessess e, 62
Personalities 85 HOSPOLSccveiiiciiesicsiessesse s 65
Personalities s Traffic COPSccviiiiiicece s 66

Composing Frameworks using Personalities ... 69

Delegating Composition to the Application’s Code..........cccovvvvvrivnireniiesiesiennns 71

Other Collaboration-Based WOIK ... 73
FUTURE WORK ...ttt 75
Performance Ranges OF GUAIANTEES..........ccvvuerrrerrieriresieesssssss s esssesesseens 75
Mapping and Parameter CONVEISION ...t essees 75

INNEITTANCE OF PRISONAIITIES ...ttt ettt ettt et et et et ee e e eeanee s 78

Composition Of PersONalities ... 80
WHERE HAVE WE SEEN THIS BEFORE? ... eeesssssssnenns 82
USING DEIBJALIONcveviiciece e 82
ReIaXiNG INNEITEANCE ... 82
THE VISITOI PALLEIM ... 83
Subject-Oriented Programming........cccoeiessesesssesss e 84
AdaPLIVE PrOGIramIMINGcoviuriiiriinienieisiesieses et snias 85
The RAPIDE CONNECTION.c.eiiiieieisisie st 85
CONCLUDING REMARKS ...ttt 86
What We Said We Were GOING TO SAY ..o ssssessssessnnes 86
What We ACtUAIlY SAId...........ccoriiieiieceses s 86
What GOO 1T DId US.....c.coeiiiicneini s 87
BIDHOGIAPNY ..o 88
APPENDIX A — A COMPLETE EXAMPLE........cooiiiieeiccsi s 92
THE SEALIC VEISION ..o 92
The . pj Files for the Animal HIerarchy ..o 92

The Personality FIlESccoviiiiiiieee s 93

The Client using Static Personalitiesccoovovrvvrrnrininneesssssseessesses s 94

The Generated JaVa COUE.........ccouviiiiririn e 95
ANIMal HIBFArChY ..o 95
PEISONAITIES ..ot 97

CHENT COUE ... 98

The DYNAMIC VEISIONcocviiiiieieiitcs st 99
The Client using Dynamic Personalities..........ccccvvevnneneneeessssssssss e, 99

The Generated Java COUE.........ccviriiririe bbb 101
ANIMAl HIBFAICNY ... 101
PEISONAITIES ..ot 103

CHIBNE COUR ..ottt ettt et ettt e e et et et eteeeeete e aeeaeeseeseartaneaenaananas 105

LIST OF FIGURES

Number Page
Figure 1: Z00 Class NIErarChy ... 18
Figure 2: Popular behavior deCOMPOSITION..........cccoviiiiiiceceees e 19
Figure 3: Popular behavior using multiple iNNeritance ..., 22
Figure 4: Relationship between client, personality, and personifying classes..........c.cccovvvvnnen. 26
Figure 5: A prototype and an example of @ Personality ..., 28
Figure 6: The Zoo class diagram using Personalities.........ccoverrrerrininnnssessessesssesnens 30
Figure 7: Person, Employee, Manager hIerarchy ..., 36
Figure 8: Generated JAVa FilES..........ccooiiiiiiccice e 49
Figure 9: Generated Java System’s RelationShipsccovvvevenicnescseesess s 51
Figure 10: Creation of objects and their associated $SEQO ClasseS........cccovvrvrivinreireiriininnnnn, 54
Figure 11: Using an upstream interface Methodcccooveveiveicencececeeese e 56
Figure 12: Dynamic Personalities’ common ProtoCol..........ccoovevievieniieniieneessesseessennen, 57
Figure 13: Subclassing hotspots in framework instantiation..............ccccevveveiiiccieiiceeinne, 64
Figure 14: Delegation and ODJeCt ideNtitycccccevveiereeieeceee e 65
Figure 15: ShowFramework with Fl i er as hotSpot..........cccccviciiiicsiicseceee s 66
Figure 16: Takeof f AndLandFr amewor k with LandGear as hotspotcccccv.e.. 67
Figure 17: Pl aneApp, the original appliCation...........ccccvvveninnieniesseseesess s 68
Figure 18: Composing two frameworks INtrUSIVELY ..o, 70
Figure 19: The plane application using the composed frameworkccccoevvvvereviresrennnn, 71
Figure 20: The Plane Application using two side-by-side frameworks..............cccccoeviriiririnnnne, 72

Figure 21: Inheritance of Personalities w.r.t. abstraction and granularityccccccovvinnnee. 79

LIST OF CODE SAMPLES
Number Page
Code Sample 1: Definition of the FI i €r personalityc.cccoovviveninnninnssssesnens 28
Code Sample 2: A Bat class that personifies a Fl 1 5 ...y 29
Code Sample 3: A LazyPel i can redefining what it shouldn’t...........cccccoovvivviivniinriinnnns 34
Code Sample 4: A client using an object that personifies Fl i €r ..., 47
Code Sample 5: Knowing and UnNKNOWING CENTScviiiiiieresceseeiseesse s 48
Code Sample 6: SEALT ON. | AV Ao 52
Code Sample 7: SW MTBI $EQO. | VA .. ssssenes 52
Code Sample 8: Pseudo code for generating the $EQO Classes...........cccoeererinierieneninsenns 53
Code Sample 9: The Java interface SW MITBI . | AVaA. ... 53
Code Sample 10: Pseudo code for generating the Java interface file...........cccoovviivniiviiicinns 54
Code Sample 11: Pseudo-code for creating the Java class filescccouvvvrivivinniinnisniennnns 55
Code Sample 12: A dynamiC CHENT ..o 58
Code Sample 13: Adding Shr i nk at the correct place in the inheritance chain.................... 59
Code Sample 14: Generating Java class files (dynamic VErsion)...........cocoveveneninnienienns 60
Code Sample 15: Generating $Ego files for the dynamic Case............ccoevvvvvrieievevseneiienns 61
Code Sample 16: SPACESNUL T 1 € ClASSc.cvvveerreeeeeee s 76
Code Sample 17: SpaceShut t | e class with name-mapped personification................... 76
Code Sample 18: Two SEBSD Personalitiesccooevierreniernrrinienssssssssssssssssssssssesnsens 77
Code Sample 19: Personifying two SEBSD personalities without parameter conversion 78
Code Sample 20: Personifying two SEBSD personalities with parameter conversion............ 78

Code Sample 21: Mechani cFl i er ext ends Fl i €5 . 79

10

ACKNOWLEDGMENTS

I would like to thank Karl Lieberherr and Mira Mezini for their help and support of this
work. Thanks to Tony Confrey and Johan Ovlinger for their review of early versions of this
work. | am grateful to GTE Laboratories for their sponsorship of my studies. Most

importantly, I would like to thank Laura for her unconditional support.

11

Chapter 1

THE DIFFICULT TASK OF MODELING BEHAVIOR

This thesis aims to present an alternative way of modeling behavior in software, using as
much as possible of the current technology. It is important, therefore, to understand the
nature of a software system, the process by which systems come into being, and the complex

task of modeling application-domain behavior in software.

THE FUNCTIONAL NATURE OF SOFTWARE SYSTEMS

At a very high level, a software system is deployed to perform a function for its owner. When
feasibility studies are conducted on whether to develop a new system or not, owners are
concerned with the new functionality or capabilities a system will have. The “black-box”
metaphor has its roots in the inherent functional nature of software systems: “given input X,
it will produce output f(x)”. In the words of Bertrand Meyer, “a well-organized software system
may be viewed as an operational model of some aspect of the world. Operational because it is used to generate
practical results and sometimes to feed these results back into the world; model becanse any useful system niust

be based on a certain interpretation of some world phenomenon.” [Meyer88, pp. 51]

Furthermore, the functional view of the system can be decomposed into a function
hierarchy. Bigger-scope functions are made up of smaller-scope ones. The result is a functional
decomposition Of the application domain, which represents a kind of containment hierarchy in
the sense that in order to fulfill a bigger scope function, you must “have” (i.e. execute) its
smaller-scope functions. However, this is containment of relationships (i.e. links), and not of
the functions themselves, as it is quite possible for several bigger-scope functions to depend

on the same smaller-scope function to perform a certain task generic to the entire system

(i.e. 1 ogin()).

12

Following this strict functional decomposition fueled the szuctured programming approach to
software development. Structured programming implies decomposing the functionality of
the application into several smaller functions, each with clear interfaces. The flow of control
is kept by a “privileged” function (i.e. mai n()) who yields to sub-functions as necessary.
Since functionality was encapsulated, it was easy to see “what the program was attempting to
do”.

Unfortunately, focusing exclusively on the functional structure of the system has its
disadvantages. The main problem is that the data over which all the functions operate are
spread throughout the entire system. Partially because of the programming languages’
requirements with respect to visibility, many times specific data items needed to be
duplicated in different parts of a system, breaking daza encapsulation. The alternative to data
duplication was giving all the data elements global visibility, with the accompanying
reduction of the global namespace, as well as the scalability and concurrency problems it
entails. Furthermore, in both approaches it was not possible to guarantee the integrity of the
data elements. Since many different functions were allowed to manipulate the data, different

functions might change the data without abiding by the same intended semantics.

Object-oriented programming grew to address these problems. According to the object-
oriented programming paradigm, data elements that belong together are collected in newly
created abstractions, called c/asses. Access to a class’ data members is closely guarded by the
class itself, thus providing a mechanism for preserving data integrity through the use of
accessor methods. Classes can themselves be ordered in a hierarchy, creating what is usually
called the class hierarchy OF inberitance tree. The relationship between classes in a class hierarchy

is of the “IS-A” kind, and does not imply containment.

Viewed from the leaves up however, an inheritance tree does imply containment of data
members. As a matter of fact, inheritance grew out of the need for providing incremental
extension of data abstractions. Therefore, a class that extnds a super-class contains all the
data members of the super-class plus its own. Inheritance trees are, therefore, specially

appropriate to represent relationships between real-world objects. From examining the real

13

world, it is apparent that the characteristics (i.e. data attributes) of many pairs of objects that
would fulfill the “is-a” relationship can be strictly ordered via a superset relationship. For
instance, an oversimplified version of an Aut onobi | e could contain the nake, nodel ,
year, and not or - hp attributes, while a Tr uck that ext ends Aut onobi | e has all these
attributes plus maybe | oad- capaci ty andtracti on, which are specific to trucks.

The same is not true, however, for the member functions in a class hierarchy. While
inheriting classes must carry along all the data members of their super-class, they are in some
cases allowed to override the member functions and thus might conceivably change their

semantics.

FINDING OBJECTS AND BEHAVIOR

Object-oriented programming has been well received by the software engineering
community at large, and is currently being used by virtually every large software development
effort. The first thing that comes to mind when designing an object-oriented system is,
naturally enough, finding the objects. In spite of Meyer’s assertion, “This is why object-oriented
designers usnally do not spend their time in academic discussions of methods to find the objects: in the physical
or abstract reality being modeled, the objects are just there for the picking!” [Meyer88, pp. 51], a number
of object-oriented analysis and design methodologies have tried to help developers do just

that, identify and populate the objects.

This thesis is more concerned, however, on the contents of these classes. Namely, the
member functions (and the semantics) each of them will have, and how they get assigned to
a particular class. As indicated in what follows, it is generally recognized that after initial
analysis of the application domain, a software developer is left with two hierarchies: the data
hierarchy and the function hierarchy. How these two sets get melded together to form
classes is at the heart of the problem of modeling behavior with current object-oriented

programming languages.

14

In the view of Rebecca Wirfs-Brock et. al. [Wirfs90], initial exploration yields a list of classes
within the application, a description of the knowledge and operations for which each class is
responsible, and a description of the collaboration between classes. Classes are loosely
defined as “objects that share the same behavior”. However, the steps proposed for
identifying classes in the system are oriented towards following the data decomposition
hierarchy. Furthermore, responsibilities are assigned to objects very early-on: “What actions

must get accomplished, and WNICN object will accomplish them, are questions that we must answer right at

the starf” [Wirfs90, pp. 32]

Grady Booch’s method [Booch94] suggests first identifying a data dictionary and then
concentrating on the “semantics” of classes and objects, their behavior. The data dictionary
or class hierarchy is arrived at by a number of different paths. Booch suggests not only
looking at noun-phrases in the requirements specifications, but also, as in [Wirfs90],
encourages making roles, responsibilities, events, and other abstractions also part of the data
dictionary, using CRC cards [Bellin97] as the “catalyst for the brainstorming process” [Booch94,
pp.237].

In Object-Oriented Software Engineering [Jacobson92], Ivar Jacobson and his colleagues
follow their own *“use-case based approach”. They propose roughly the same sequence of
discovery as the other methods; finding the class hierarchy first and determining the
operations on the objects later. In their own words, “T'he object’s aperations come naturally when we
consider and object’s interface. The operations can also be identified directly from the application, when we

consider what can be done with the items we model.” [Jacobson92, pp. 79].

The work of James Rumbaugh et. al. [Rumbaugh91] states very clearly that operations and,
specially, roles, should not be made into classes: “The name of a class should reflect its intrinsic
nature and not a role that it plays in an association” [Rumbaugh9l, pp. 155]. They also first

concentrate on building the class hierarchy from the nouns in the requirements specification.

It is important to note that all these methods do state, very clearly, that the classes should

encapsulate normal behavior for the object they attempt to model. Normal behavior is similar

15

to what [Harrison93] calls zx¢rinsic behavior. We agree with their view as far as the object data
members are concerned, as well as their related behaviors (get () and set () operations,
for instance). However, we believe that there’s no singular application domain behavior that
can be considered unique and different from any other (e.g. photosynthesis in [Harrison93]).
Rather, the class hierarchy designer has a particular application domain she is targeting and
thus her particular »ew at the time becomes the object’s intrinsic (application domain)

behavior.

In practice, however, the object-oriented methods all correctly suggest a bias towards
representing the real world in the class hierarchy. The intrinsic properties [Harrison93] are
somewhat view-independent and thus they provide a good foundation on which to begin
modeling. This means that software developers tend to closely follow the data
decomposition of the application domain in their class hierarchy. In our experience, the rule
of thumb “when in doubt, follow the data” is widely acknowledged by industry’s software

developers.

WHEN BEHAVIOR MISBEHAVES

Unfortunately, while decomposing an application domain into a clear hierarchy of data
abstractions is relatively straightforward, giving each of those data abstractions their

application-based behavior is not.

ROLES AND THE APPLICATION DOMAIN FUNCTIONS

Once the data decomposition part of the analysis is finished, we are left with a number of
functions that we need to assign to the class hierarchy. In this context, these functions are
not the low-level, basic functions that are easily attached to every data abstraction (i.e.
accessor methods, constructors, etc.) but rather part of domain-based behaviors, such as

roles and responsibilities (i.e. “owner”, “employee”, and “service representative”). These
high-level functions are usually clustered together into what has been called a “role”. For

16

example, an Enpl oyee role offers the application domain functions Joi nUni on(), and
Qi t().

In our experience, domain experts usually speak in terms of these high-level functions and
roles when describing the system. Some object-oriented methods, such as [Andersen92] and
[Wirfs90], are more conducive to the discovery of roles than others. Application domain
roles can usually be found when inspecting the dynamic and operational views of your
system, such as use-cases in [Jacobson92], object interaction diagrams in [Booch94], and
event traces in [Rumbaugh91]. These high-level functions can also arise from the need to
encapsulate commonality after a detailed analysis of the behavior of a group of data

abstractions, as the example in the next section will demonstrate.

THE PROBLEM OF MAPPING APPLICATION DOMAIN FUNCTIONS TO THE CLASS HIERARCHY

The mapping from the application functional domain onto the data decomposition domain
IS not one-to-one or many-to-one (which is easy), but rather one-to-many or many-to-many.
In other words, there are application domain functions that might be required by more than

one application domain data abstraction. In this thesis, we will call these functions popuiar.

The standard solution to this problem is to select one of the potential classes and assign the
popular function to it, while using associations between the other potential classes and the
one implementing the popular function. This approach works fine as long as the classes
involved are naturally related in the application domain, but breaks down when the
association needs to be added specifically to reuse the implementation of the popular
function. Adding a spurious association, not supported by the problem domain, increases
the coupling of the system and hinders its reusability by incrementing the dependencies
among its components. An alternative approach to using an association is simply duplicating
the function implementation. This is, in its own right, undesirable from a correctness and
maintenance perspective. Duplicating the function implementation means that changes to

the function need to be propagated to all the classes that host an implementation of it. It

17

also reduces the robustness of the system, since now there are more places where an error

can wreak havoc in the semantics of the whole system.

ISSUES IN MODELING POPULAR FUNCTIONS

How then, are popular functions modeled in current programming languages? To motivate
this section, we will use an example. Our application domain has to do with building a

software system for an animal theme park.

PELICANS, WHALES, AND THE VIRTUAL Z0O: A RUNNING EXAMPLE

Studying the different requirements from the distinct groups of users in the system, the
software developer arrives at the object model for the animals in the theme park. Since the
primary goal of the system is to maintain the well being of the zoo’s animals, the software
architect uses the veterinary group members as the domain experts. Applying any one of the
more popular OOA/D methodologies, such as [Booch94], [Jacobson92], [Meyer88],
[Rumbaugh91], or [Wirfs90] will likely yield a class hierarchy that follows the classical nodel
[OMG92], or the intrinsic properties of the data. The class hierarchy arrived at is shown in

Figure 1.

The hierarchy in Figure 1 will support the intrinsic properties’ behavior (i.e. get (), set (),
etc) and the application-domain behavior required by the veterinary group. Thus, functions
like LayEggs() and Nurse(), which help support a “reproductive behavior”, can be

correctly assigned to specific classes, as shown in the class diagram.

The veterinary group will most likely not be the only user of the system. Furthermore, each
user of the system has her own view about the class hierarchy. Whereas the veterinary needs
to classify the animals based on their reproductive system, the inventory representative must
make sure that every animal has its own code. The public relations representative, on the
other hand, is terribly concerned with the fact that each animal must have its own friendly

name. The trainers would like to classify the animals according to their capabilities, whereas

18

the feeders only care about an animal’s diet, and so on. Subject-Oriented Programming, as
originally proposed by Harrison and Ossher [Harrison93] explores this problem in detail.

Animal
+mama - Siring
~pode : inleger
Chviparous Mammal
+LayEggs | b: #Murse| h:
Crocodile Goose Pelican Bat Whale Sealion

Figure 1: Zoo class hierarchy

Each of the different users of the system will require a potentially different application-
domain behavior. This translates to a different set of popular functions for each. Mapping
these onto the class hierarchy shown in Figure 1 will prove difficult at best. For the sake of
clarity, we will consider in detail the needs of the trainers. Specifically, the task of building a
virtual animal show for the theme park to be used for advertising purposes. After consulting

with the domain experts, we might have a requirement statement that looks like:

“The show shall start with the pink pelicans and the African geese flying across the
stage. They are to land at one end of the arena and then walk towards a small door
on the side. At the same time, a killer whale should swim in circles and jump just as
the pelicans fly by. After the jump, the sea lion should swim past the whale, jump

19

out of the pool, and walk towards the center stage where the announcer is waiting

for him.”

Upon an initial analysis of the requirements, we realize that most animals perform some
basic functions in the same manner. That is, there exists a set of popular functions whose
semantics you can model independently based on the semantics of their sub-functions. For
our running example, these popular functions could be Fl y(), Swi nm(), Wal k(), and
Junmp() . A simple version of the semantics of, for example, the Fl y() function could be

fixed using Java as:

/'l (x,y) is the target |anding spot

void Fly(int x, int y, int altitude) {
reset Met er skl own();
Takeof f () ;
for (int a=0; a < altitude; a++) Ascend();
whil e(! ThereYet(x, y)) FlapTowards(x, Yy);
for(int a=altitude; a > 0; a--) Descend();
Land();

}

Similar definitions could be made for the rest of the popular functions, making use of their

respective sub-functions, as shown in Figure 2.

Takeof f
Ascend
Fly Ther eYet
Junmpl nTheWat er EleapTO\(/j\/ar ds
Subrer ge Laﬁgen
MoveFi n Swi m
Ri se
JunmpQut Of TheWat er
Pr epare
MoveFoot
Vel k Stabilize
At Ease
CheckDi st ance
SprintTo
LiftOff Junp
Land

Figure 2: Popular behavior decomposition

20

While the software developers can, and should in the author’s opinion, model these popular
functions isolated from the data hierarchy, relying solely in their sub-functions, there is no
easy way for mapping them onto the class hierarchy for the system, shown in Figure 1. The

difficulty stems from two facts:
(@) More than one class need to provide the same function, with identical semantics

(b) The set of classes from (a) does not conform to the data decomposition, and
ultimately, the class hierarchy of the system.

If we wanted to model the “reproductive behavior”, on the other hand, we would be able to
easily allocate its functions in the hierarchy, since it follows (somewhat) a reproductive
classification. For example, the Nurse() function of the reproductive behavior can be
correctly assigned to the Manmal class, since nursing is an intrinsic behavior of the “real-
life” object the Mammal class attempts to model. Similarly, LayEggs() could be assigned to
the Ovi par ous class without problems.

ALTERNATIVES FOR MAPPING POPULAR FUNCTIONS

The problem of mapping these behaviors to a class hierarchy is not new. As a matter of fact,
it arises in all but the most trivial systems, as there are many stakeholders (i.e. clients) of the
system, each with their own view. Unfortunately, none of the common solutions are

satisfactory.

Pushing all the popular functions (i.e. Fly(), Swi m(), Wal k(), and Junp()) up the
inheritance hierarchy is one common response to this problem. It helps in that subclasses
will share a single implementation of the function, a goal we want to achieve. However, even
in our simple example we find that in order to have a single implementation of the popular
functions we need to map them at the root of the hierarchy (i.e. Ani mal class). For
example, we can’t assign Wal k() to the Ovi par ous class, since Seali on also needs that

function. Besides, this approach is undesirable from a design perspective, as not all classes

21

perform all functions. For example, bringing Fl y() just one step up to the Ovi par ous

class immediately introduces a design mistake, since a Cr ocodi | e clearly does not fly.

Another alternative to moving the popular functions’ implementation up the inheritance
hierarchy is to simply duplicate these implementations wherever needed. This approach is
clean from a design perspective, as the popular functions are allocated exactly where needed,
but it is severely flawed from an engineering perspective. The duplication of code implies
ever increasing maintenance costs whenever a change is required. More importantly,
preserving a single semantics for the popular function becomes a daunting task, since the
developer must make sure that she changes every single implementation of the function that
is being worked on. It is analogous to the treatment data objects enjoyed in the early days of

structured programming.

Even if you could somehow manage to have just a single implementation of each of the
popular functions, your problems would be only halfway over. Each individual class still
needs to advertise which ones of the popular functions they support. This is essential in
strongly typed languages to enable the compiler to type check the client’s source code that
calls the popular function. For example, a compiler must know that Whal e supports
Swi n() and Junp(), but not Fly() or Wal k(), whereas SeaLi on does support
Wl k().

The concept of inzerfaces [Arnold97], as understood by the Java programming language, helps
solve this last problem, but does not help with the others. Interfaces allow a class to
advertise its compliance with arbitrary sets of method signatures. Interfaces, however, only
contain method signatures, and no implementation. Thus, even if we could “advertise” the
popular functions using interfaces, we would still need an implementation for each class that
implements the interface, with the drawbacks that have already been mentioned. There is,
however, a subtle additional problem with interfaces. To the clients of the system (i.e. the
trainer or feeder objects), the fact that there is a single interface for a given popular behavior
might convey the erroneous impression of fixed semantics, and thus relax explicit

programmer checks or assertions.

22

A nimal
<name ; Sirmg
e \
Owiparous Mammal
+LayEgge |): +HurEe|
Crocodile Sooae Pelican Blat Whale Seal lon
r
Thing ThatFlles Thing ThatSwims Thing ThatW alks Thing ThatJumps
12 TRE #Swim i | ; +Valk |)z ddumg | |:

Figure 3: Popular behavior using multiple inheritance

Another approach to this modeling problem would be to turn the popular behaviors into
classes and use multiple-inheritance to compose them with the data class hierarchy. The
Thi ngThat Swi s, Thi ngThat Wl ks, Thi ngThat Fl i es,

classes and

Thi ngThat Junps are created and linked to the data hierarchy as shown in Figure 3.

This alternative, while the closest in spirit to our goals, has a number of implications. First,
the semantics of multiple-inheritance have traditionally been ambiguous and are not widely
understood. Second, not all programming languages support multiple-inheritance.
Specifically, Java does not. Third, and most important in our opinion, is the fact that the
Thi ngThat Fl i es, Thi ngThat Sw ns,

Thi ngThat Junps, and Thi ngThat Wal ks) do not have any constraints in the

classes that embody the behaviors (i.e.

23

implementation of their respective popular functions (i.e. Fl y(), Swi n()). The multiple-
inheritance solution is based on programming with artifacts that are not part of the problem
domain. For instance, there is no concept of an Thi ngThat Fl i es object in the
application domain. Flying is merely a behavior that can be performed by several
abstractions in the application domain. We are artificially creating new classes out of the

need to turn behavior into first-class objects.

24

Chapter 2

MODELING WITH PERSONALITIES

In this chapter we present our first solution for flexibly modeling popular behavior by
introducing Personalities. We first present how to do analysis and design with roles, later
introduce the foundations of the Personalities idea by describing a simpler version that is
static in nature but is useful to understand the concepts.

ANALYSIS AND DESIGN WITH ROLES

As has been mentioned before, there are several analysis and design methodologies that are
conducive to the identification of roles in a software system. These are not, however, the

only way that roles can be identified, as our running example shows.

A superficial examination of the requirements statement would not yield the different roles.
A closer inspection, however, will start to show commonalties in the functions the different
objects play. It is the job of the software designer, in our opinion, to pro-actively search for
this commonality and extract the role descriptions in that way. The requirement statement
has been purposely prepared to “hide” roles in order to demonstrate that even in this
apparently adverse case, roles are easily found. Consider if not the following alternative

representation of the same requirements.

“The show shall start with every flying animal in our zoo flying across the stage.
They are to land at one end of the arena and then walk towards a small door on the
side. At the same time, a killer whale should swim in circles and jump just as the
birds fly by. After the jump, the sea lion should swim past the whale, jump out of
the pool, and walk towards the center stage where the announcer is waiting for
him.”

25

In the above representation, it is clear that the show is concerned with “flying things” as a
generic behavior it expects from a subset of the Zoo’s animals. It is important to note,
however, that the same cannot be said for the part of the show that involves the whale and
the sea lion, since in this case the show requires those specific instances to expose a given
behavior. The software designer’s job, however, is to be able to discern that both whales and
sea lions (and many swimming animals) swim in a similar way, and thus be able to abstract

that behavior out as a role.

The software designer can detect commonality in behavior by inspecting the different
abstractions in the (evolving) system and studying how they react to similar stimuli. It is
important to free yourself from the constraints of the class hierarchy at this point and look
for similarities in any set of classes, even if not directly related via a common ancestor. As we
have seen before, the role classification hierarchy does not necessarily conform to the class

hierarchy.

WHAT ARE PERSONALITIES?

This thesis proposes a new concept, the personality, to encapsulate a role-specific behavior.
The idea behind personalities is being able to design a set of popular functions in isolation

from the class hierarchy that will eventually play the role the popular functions belong to.

In concept, a personality is a kind of wicro-framework since its popular functions encapsulate
the logic and control flow necessary for fulfilling the behavior, but depend on the
implementation of certain sub-functions by the class that plays the role, or personifies the
personality. This is analogous to the case of frameworks [Johnson97] where a set of
cooperating classes encapsulate an entire application’s flow of control, relying on the
definition of specific subclasses for customization.

From a programming language perspective, personalities are similar to abstract classes in the
sense that they are also under-defined abstractions. The intent of both, however, is different.

While abstract classes tend to be everything to everybody, personalities specifically target the

26

modeling of one (and only one) role. Furthermore, personalities impose a set of constraints
both on their own definition as well as on the clients that use them to provide a greater

degree of semantic guarantees than abstract classes do.

From the perspective of the clients of the personalities, they look more like Java interfaces
[Arnold97], since personalities “export” the set of popular functions that correspond to a
given role behavior. However, personalities are not identical to interfaces for two main
reasons. First, they are conceptually more narrowly defined than interfaces. Second, they

contain implementation, whereas interfaces do not.

clientclass
i«:«: Ul ==0

a _personality:Personality

Passive
i:::: Dl ==0

personifying class

Figure 4: Relationship between client, personality, and personifying classes

SYNTAX AND USAGE

From an architectural perspective, a personality acts as a system with two interfaces to
external actors [Jacobson92]. Being an under-defined abstraction, a personality needs to be
personified by a class in order for it to be instantiable. This class is called the personifying class.

On the other end, a personality acts as role-specific interface to the object. The systems that

27

make use of the personality-defined interface are called users Or clients Of the personality.
Figure 4 depicts this relationship.

Defining a personality is very similar to defining a new class. There are a few added

keywords with easy to remember semantics. A personality definition consists of five parts:

= The upstream interface, made up of all the member functions that clients of this
personality can access (one or more). These encapsulate what we have been calling
“popular” functions. It is here where the personality adds value to the design, since it

provides a single and unique implementation of such behavior.

= The downstream interface, composed of only signatures for functions prepended
by the di keyword. These are the functions that personifying classes must

implement. Clients of the personality cannot access these methods.

= Any private functions that the personality might need to implement the upstream

interface. These functions are not visible to either clients or personifying classes.

= Any role-specific attributes necessary for maintaining some state about the role in
the personality itself.

= A constructor for the personality, used to initialize any personality-defined
attributes.

Code Sample 1 shows the definition of the Fl i er personality, while Figure 5 shows an
UML representation of a prototypical Personality as well as the Fl i er personality. New

keywords are underlined in Code Sample 1.

28

[l Flier.pj
personality Flier {

[/l upstreaminterface. Mist

publi c

i mpl erent here.

void Fly(int x, int y, int altitude) {

reset Met er sFl own() ;
Takeof f () ;

for (int a=0; a < altitude

a++) Ascend();

whil e(! ThereYet (x, y)) FlapTowards(x, Yy);

for(a = altitude; a > 0;

Land();
}

// downstreaminterface. Don't

di void Takeoff();

di void Ascend();

di bool ean ThereYet (int X,
di void Fl apTowards(int x,
di voi d Descend();

di void Land();

[/l private functions. Mist

Descend() ;

i mpl here.

int y);
int y);

i mpl enent here.

private void reset MetersFlown() { nmeters flown = 0; }
[/l attributes (specific to the role)

private float neters_fl own;

/'l constructor (optional)

Flier() { resetMetersFl own();

Code Sample 1: Definition of the Fl i er personality

Personality

-aftr : Any

+Ul{BasicTypes) : BasicTypes
Dl {BasicTypes) : BasicTypes
- PrivateFunctions { Any) : Any

<< Property ==

All the members of the Ul (Fly inthe

Flier

- meters flown :float =0

+Fly { int x, Inty, int altitude) : void
Takeoff {) : void

Ascend {) : void

ThereYet (intx.inty) : boolean
FlapTowards (int x.inty} : void
Descend () : void

#Land{ }:veoid

- resetMetersFlown (|} : void

case ofthe Flier personality) and the
private functions (resethdetersF lown in
the Flier personality’) must be implemented
inthe P ersonality itself and are final.

Figure 5: A prototype and an example of a personality

29

A class that wants to personify a given personality needs do the following:
1. Declare its intent via the per soni f i es clause

2. Implement all the functions in the downstream interface.

For illustration purposes, Code Sample 2 shows a trivial definition of a “special” Bat class
that personifies a Fl i er personality.

/] Bat. pj
public class Bat extends Mammal personifies Flier
{

/1 intrinsic properties and nethods of the Bat class
bool ean i n_Dracul a_node;
voi d Updat eMbde(Tine time) {
if (tinme > SUNLI GHTOUT) in_Dracul a_node
el se i n_Dracul a_node

true;
f al se;

Bat () { in_Dracula_nmode = fal se; }

bool ean BiteBeautiful Lady(Lady | ady) {
if (in_Dracula_node) lady.BittenBy(this);
return in_Dracul a_node;

}

/1 since a Bat flies, use the Flier personality with

/1 the follow ng inplenentations of the DI

Conpass _conpass = new Conpass();

void waitUntillnDracul a() { /1 sleep until
while(!in_Dracul a_nmode) { /'l we can go to
Updat eMbde(new Date()); /] Dracul a node
Thr ead. sl eep(5000); /] since that’s

} /1 when we fly.

}
voi d Takeof f() { waitUntillnDracula(); }
voi d Ascend() { /* not shown */ }
bool ean ThereYet(int x, int y) {
return _conpass.where().x() == x &&
_conpass. where().y() ==vy;

voi d Fl apTowards(int x, int y) {
if (_conpass.unitialized())
_conpass. set_target (x, Vy);
// do whatever | need to nove...
_conpass. updat e_posi tion();
}
voi d Descend() { /* not shown */ }
void Land() { /* not shown */ }

Code Sample 2: A Bat class that personifies a Fl i er

Figure 6 shows how the Zoo class diagram looks like with the insertion of the personalities.

Notice the similarity of this diagram with Figure 3, which depicts the multiple-inheritance

30

solution. Personalities allow the power of expression of multiple-inheritance without many

of its complications.

& nimal
- name | Srng
- eode ©Intege
Owiparous Mamm al
+LwEggs i k- +Hurse| :
Crocedile Goose Palican Eat Whale Saallan
) P-l-i) 7 . 11‘ ¥ ¥

Flier | Swimmer Walker | Jum per

-
F
£

Figure 6: The Zoo class diagram using personalities

Personalities are rooted in the idea that popular functions can often be expressed in terms of
smaller-granularity, class-dependant functions. The examples in this thesis, albeit somewhat
simplistic, are geared towards illustrating this idea. The downstream interface is made up of
these sub-functions, which become the link to the personifying class. From our experience in
industry, large-scale framework customization is rather complex to implement, but lower-
level (i.e. class-level) tailoring is many times useful and much more tractable. Personalities

attempt to make this micro-framework implementation easy to model and apply.

31

THE LAW OF PERSONALITIES

As has been explained before, personalities are more than just a convenient way of
expressing multiple-inheritance. They attempt to strengthen the semantic guarantees they
provide to the client classes by conforming to a set of requirements, or rules. Abiding by
certain rules guarantees the developer the reusability and, to some degree, the correctness of
the design. It is partially in these rules where personalities improve over abstract classes. We
consider the following set of requirements for fully exploiting the power of personality
programming. Wherever possible, the personalities compiler needs to make sure that these
are met.

1. “No Default Implementation” Rule: The downstream interface must be a set of
pure abstract functions, with clearly identified semantics.

2. “Basic Types” Rule’: Only basic object types (i.e. string, int, Vector<string>,
etc.) should be passed in parameters and returned from functions in the downstream
interface. A reference to the Personality itself is permitted to allow for self-referential
implementations.

3. “Behavioral Buffer” Rule: Clients of the personality (i.e. the “upstream” objects)
must not use the links to the personifying class (i.e. the downstream interface). These

clients should only access the high-level behavior functions the personality provides.

4. “Fixed Popular Behavior” Rule: The implementation of the popular functions

must be protected against changes by personifying classes.

5. “Implementation Separation” Rule: The implementation of the popular functions
Is allowed to use the smaller-granularity functions to communicate with the

personifying class and nothing more.

! This rule has been demoted to “recommendation” to allow for the componentization of a
set of personalities in an integrated fashion. We still recommend its use at the boundary of
the deployable component.

32

No Default Implementation Rule (the need for some class)

The rationale for this rule is that a personality cannot possibly provide a “default”
implementation. We are aiming at encapsulating behavior that might be reused by a number
of distinct classes. Therefore, the “default” versions for the downstream interface methods
might vary greatly in different contexts and thus a common implementation does not make
sense. Pragmatically, this rule makes a personality uninstantiatable on its own. This much is
easily enforceable by the compiler.

This rule also calls for the semantics of the downstream functions to be clearly understood
and defined. These functions are the weak link with regards to the semantic integrity of the
entire system, since they are the ones implemented by the personifying classes. It is thus
essential for them to be easily understood by the programmer. For instance, a downstream

interface that is ambiguously defined with respect to its return value format, such as:

/1l compute and return today' s date

String Today();
would not be of much help to the developer personifying this personality, since it provides
no clue about the format the answer must be in. Checking that the personality does not

implement the downstream interface functions is simple. Automatically making sure the

semantics of those functions are clear, on the other hand, is still an open problem.

Basic Types Rule (KISS)

A compiler can easily check this requirement, which ensures an attainable minimum set of

pre-required knowledge in order for any class to personify a given personality. We restrict
personalities from making the parameters and return values of the downstream interface
methods user-defined types, since this will imply that the personality would forever need to
be deployed with an implementation for the user-defined types it uses. We require restricting
these signatures to the lowest common denominator for the given programming language.
For instance, this rule hinders the programmer of a personality from the following
declaration in the downstream interface:

33

MyDat ed ass Today(); // return today

This declaration couples the personality with the user-defined type MyDat eCl ass and
damages its reusability, since the given personality will forever need to be deployed alongside
the package that defines MyDat eCl ass. Using Java’s “standard” Dat e class, the following
would be preferable.

/1l return Java's Date for Today
Dat e Today();

After some debate, we decided to demote this rule to recommendation-level status. Strictly
enforcing this rule makes the job of componentizing personalities too difficult, as translation
to/from basic types is required at every interface. We strongly recommend the use of this
rule at the “boundary” of the unit of deployment (whatever this may be) since that would

ease the way for the user of the personality “component”.

Behavioral Buffer Rule (gotta do something, after all)

This rule attempts to make personalities the clear boundary between the clients of the
personality (i.e. the upstream objects) and the personifying classes (i.e. the downstream
objects). This aims at providing a specific layer of design reuse at the personality level. In
other words, by restricting the clients to only use the popular behaviors provided by the
personality, we are fixing the client’s entry point to the personality. Once again, the compiler

can easily enforce this requirement.

For example, a class that needs to interact with a swinmer can only call Swi n(i nt
meters, int depth) and not any of the other functions (i.e. Subnerge(),
MoveFi n(), etc). The di keyword in the personality’s definition is aimed at helping the
compiler and the user of the personality to clearly discern what is allowed and what is not. In
the following sample code, both correct and incorrect use of a personality’s interface are

illustrated:

34

/1 SeaWrl dShow() is a client of Swi mrer pers.

voi d SeaWor | dShow Swi mmer shanuor fli pper) {
shanuorflipper. Swi n(10,10); // ok, ui used
shanuorfli pper. Subnerge(); // error, di used

Fixed Popular Behavior Rule (don’t go second-guessing me)

This aims at making sure that the personifying classes do not change the originally intended
semantics for the personality?. For example, if we would allow a LazyPel i can class to do
something like what is shown in Code Sample 3 the semantic integrity of the system would
be compromised, since this special mosquito only flies at about half the altitude as what the
personality promises it would. Furthermore, since this particular implementation of
Fly(...) contains a logic error, its effects are undefined. Therefore, the compiler should
make sure that personifying classes implement the downstream interface and any other
private functions, but never the upstream interface.
/1 LazyPel i can. pj
cl ass LazyPel i can ext ends Ovi parous
personifies Flier
{
...inplementation of downstreaminterface
/1 we shouldn't redefine Fly(...)!
public void Fly(int x, int y, int altitude) {
Takeof f();
for(int a = 0; a < altitude/2; at+) Ascend();
whil e(! ThereYet(x, y)) FlapTowards(x, Y);
for(int a = altitude; a > 0; at++) Descend();

Land();
}

Code Sample 3: A LazyPel i can redefining what it shouldn’t

Implementation Separation Rule (to each its own)

Finally, this rule makes personalities follow their own advice by requiring that all
communication with the personifying class be restricted to the functions defined in the

2 Personalities cannot have complete certainty that the intended semantics will be realized in
the DI. We know of no way of automatically specifying and validating source-code
semantics, and thus we claim that Personalities provide sozze Semantic guarantees, but not
strong guarantees.

35

downstream interface. This aims at making sure that the set of functions is enough to
support the semantics of the personality, and trigger the discovery of new ones if not. It also
forces personalities and personifying classes to have only one meet point, namely the
downstream functions. The same argument regarding the communication between clients
and personalities set forth in the Behavioral Buffer rule is valid regarding the implementation

of the personality’s high-level behavior themselves. For example, allowing
personality Flier {

void Fly(int niles, int altitude) {
junpl nTheAi r AndStart Fl apping(); // not in
/1l downstreaminterface !

}

might restrict the applicability of this personality only to msqui t o and its subclasses (this is
assuming, of course, that the proper method visibility allows this code to be accepted by the

compiler in the first place!).

The Rule That Almost Made It
We originally [Blando98] thought about having a rule for making sure that every personality-

implemented popular function actually added some behavior on top of the downstream
interface semantics. The rationale was that, in an ideal world, each layer of functionality
would talk to the layer right below, and no need for pass-through functions would be

required. In other words, we were naive.

We do not live in an ideal world, and even if we did, sometimes clients still need access to
primitive functionality (such as that embodied by the downstream interface). After this
realization, we decided to allow the clients access to the downstream interface functionality
as long as there is an upstream interface method that serves it. In order to maintain a
behavioral buffer we need to make certain that the clients only talk to the upstream interface.
Therefore, if the personality expects its clients to need any of its low-level functionality, it
needs to publicize it through an upstream interface that simply delegates to the downstream

counterpart.

36

Chapter 3

DYNAMIC PERSONALITIES

This chapter explains the intrinsic dynamic nature of roles, critiques Personalities as
presented in Chapter 2, explores the reasons and usability of the concept of Dynamic
Personalities, and presents two different approaches for achieving dynamic behavior within
the Personalities context.

WHY DO WE EVEN CARE ABOUT THIS?

Roles are dynamic by nature. Figure 7 shows a very simple class hierarchy. A Per son is not
born an Enpl oyee, much less a Manager . As time goes by, the Per son “becomes” these
roles. The dynamic nature of roles is perfectly consistent with the real world. If we attempt
to create a software system that models the real world as closely as possible, it is only
appropriate that we allow for the possibility of roles to be dynamically *“attached” and
“detached” from objects. This is related to a well-known problem, the obect migration
[Wieringa95] problem.

Person

tis

Employee

tl‘:.

Manager

Figure 7: Person, Employee, Manager hierarchy

37

Traditional approaches to this problem have resorted to creating new instantiations (that is,
new objects) as time goes by and the state of the original (i.e. Per son) object changes. From
a modeling perspective, creating an instance of an Enpl oyee object, or a Manager object,
while keeping the original Per son object around is counterintuitive, since all three objects
are really the same real-world entity (i.e. John Smith). Also, the behavior of these three
instantiations will either be very tightly coupled (i.e. using delegation) or some sort of
duplication of object state will take place. In the first case, the code for the “personalized”
object (i.e. Enpl oyee) needs to account for the fact that it needs to retrieve all Per son-
based state from the Per son instance it is “bound” to at creation time. This, besides being
error prone in the face of complex classes, is also problematic in terms of maintenance, since
the Per son class might be modified in the future and overlap with some of the state and
semantics that the current version of the Enpl oyee class considers its own. At that time,
the Enpl oyee class needs to be modified or state duplication will take place. Duplication of
state is very error prone since keeping the states synchronized is not trivial. In the more
simpler approaches, synchronization is ignored; in the most complex ones, database
procedures such as two-phase commit might be necessary to guarantee the accuracy of a

“split” object’s state on the face of state-altering method calls.

Alternative approaches to the problem of changing roles also include re-classification
schemes. In these, the Per son object would be destroyed and a new Enpl oyee object will
be created from the old object. This solution is costly computationally and presents the
problem of not preserving object identity. Each new instantiation (i.e. Enpl oyee) is a brand
new object, even if it is tightly bound to the original object (i.e. inherits from the Per son
class). In the face of a distributed environment, having new instantiations with different
object identifiers mean that all clients of the old object need to be “refreshed” with the new
reference. This is necessary if we want services which are based on the concept of immutable
object identifiers (i.e. CORBA, COS Persistence State Services, etc.) to continue working as
expected.

38

WHAT’S WRONG WITH PERSONALITIES “AS-1S”

Personalities help in modeling software with roles. There is nothing wrong with the concept
of Personalities per-se. When we turn that concept into a software implementation such as
the one presented in Chapter 2, however, we run into some difficulties. But before we
condemn static personalities, let’s take a look at how they help with the problems of the

previous section.

WHERE STATIC PERSONALITIES HAVE IT RIGHT

In this section, we consider only the benefits of Static Personalities in relation to the
dynamic role problem. We have explored the benefits of personalities in other contexts in

previous chapters.

Static personalities lay the foundation for dynamic roles to be implemented. However, they
also help in other respects. For example, static personalities help preserve object identity,
since the potentially many different roles are “hidden” within the object itself. They still
present very different interfaces to different systems, although they do not control which
interface is active at any given time. For example, the following definition does allow
different systems to interface with this single Per son object as an Enpl oyee or as a

Manager object

/'l Person will (sonmeday) be Enployee and, with
/1 any luck, also a Manager
cl ass Person personifies Enpl oyee, Manager

Thus, static personalities can completely avoid having to re-classify an object every time its
state changes.

WHERE STATIC PERSONALITIES FALL SHORT

Static Personalities impose no constraints on which Personality the class must be
personifying at any given time. For instance, the moment the Per son object is created, it

can be passed to the M P (Manager-Incentive-Program) system even though that Per son

39

might not even be an employee yet! To some degree, static personalities resemble inheritance
in this particular case. Instantiation of the above Per son object would be similar to always
instantiating a Manager object, which in turn inherits from an Enpl oyee and ultimately
from a Per son object. You can always call the object using its Per son-defined methods,
but can also use its Manager -defined methods at any time if you so please.

As presented in Chapter 2, the concept of Personalities is completely static. This means that
Personalities are assigned to classes at compile time, and are carried with the object
throughout its lifetime. This approach works fine for certain types of roles that are inherent
to the object itself, although these are hard to find and usually belong to the inheritance
hierarchy anyway. In general, lifelong attachment of Personalities to classes is not flexible
enough to model roles accurately. As an example, a Pel i can might be a Fl i er for only a

period of its life, but it will always be an Ovi par ous animal.

Furthermore, static personalities lack commonality between themselves. That is, each
Personality is its own unique entity and shares no protocol or interface with other
personalities. This is disadvantageous because Personalities are supposed to be freely
applicable to any class, and thus one would expect a personifying class to conform to some
kind of base interface, but they don’t. In short, Personalities embody micro-frameworks well,

but don’t go a long way in making macro-frameworks’ life any easier.

DYNAMIC PERSONALITIES

To solve the problems mentioned above, we can extend the concept of Personalities to
accommodate dynamic attachment and detachment at runtime. Furthermore, we extend the
Personality concept with a simple protocol so that it can be more easily handled by the client

code.

40

WHAT WE ARE TRYING TO ACHIEVE

To provide some context for what follows, we will first specify what we are hoping to
achieve with Dynamic Personalities. It should be noted that this is a partial list of goals, used

mostly to compare the pros and cons of the different approaches we will present later on.

1. Runtime attachment and detachment. That is, we should be able to have an object
“act as” different Personalities at different times. In the same spirit, we need to be able
to take some behavior away from an object. (i.e. a Per son is laid off and thus he can no
longer personify Enpl oyee)

2. Preservation of object identity. We would like to create an object and preserve its

reference or identity throughout its lifecycle.

3. Preservation of typing. While preserving identity is a more important (i.e. it has
operational implications), preserving type information to allow for compile-time

checking is useful in the software building process.

4. Common interface. We would like all personalities to share some common base
interface, so that systems that use classes that include personalities are able to resort to a
baseline protocol with which to communicate and “discover” the characteristics of the

class.

5. Ubiquitous personification. Ideally, we would like to be able to attach any personality
to any class, provided that the class fulfills some pre-defined set of requirements. This
would allow us to develop the classes in complete isolation from the personalities

(possibly even at different times) and still be able to combine them together.

6. Reasonable performance. Ignoring this issue would be foolish, as any solution that
does not take into account such a pragmatic concern is headed for failure. We expect a
Personality-based implementation to be within the same order of magnitude from a

multiple-inheritance based implementation with respect to execution speed. We place no

41

requirements or make no claims about compilation time, since that is usually not a

critical factor®.

INDECISIVE PERSONALITIES. (NOT FULLY DYNAMIC, BUT GOOD ENOUGH)

A minimalist approach to Dynamic Personalities yields Indecisive Personalities. Concentrating in
the most important benefit, namely runtime attachment and detachment, we could imagine a
scenario where a class declares its intent (and conformance) with a set of personalities at
compilation time. The class, however, does not automatically get any of these personalities

until they are “attached” to it. For instance, the Personalities/J* statement:
cl ass Person personifies Enpl oyee, Manager

specifies that Per son will “in the future” personify Enpl oyee and/or Manager . A third-

party needs to instruct the class, at a later time, to enable or disable a given personality.

This approach has the obvious drawback that the set of all needed personalities needs to be
specified at compile time, which in fact limits the freedom of the designer since she needs to
“plan ahead”. From a more practical perspective, however, we have found that roles
themselves can be modeled into hierarchies and that usually classes personify the “abstract”
versions of these roles. For instance, personifying a generic Enpl oyee role is broad enough

to encapsulate many potential different cases.

On the positive side, though, we do expect to preserve the types of all these personalities
and thus we will be able to do type checking in both the personality itself and also on the
code of the different client systems. Performance should be degraded only minimally, since
we expect method dispatch to be slowed only by a single check to verify the “on/off state”
of the personality on the current class.

® Incidentally, with Moore’s law at full-speed, nor is memory footprint that big an issue any
longer. However, the “need for speed” seems to live on.

42

FuLLY DYNAMIC PERSONALITIES (THE WONDERS OF SIMPLIFYING)

A more ambitious approach to solving the problem of the dynamic nature of roles would be
to completely redesign the programming language’s type system and method dispatch
mechanism to allow for runtime mutation of an object’'s methods table. With such an
approach, a class need not declare its intent of personifying anything, since all

per soni f i es statements will be handled at runtime.

At the conceptual level, this approach faces two immediate problems: how to manage
method dispatch while preserving some degree of type checking, and how to determine and
validate a given class’ conformance to a personality’s requirements in terms of its

downstream interface. Let’s investigate these in detail.

Method Dispatch in Dynamic Personalities

The purpose of specifying Personalities for objects is so that these can be used by the client
systems’ code to make requests that contain some specific syntax. Clients, therefore,
program solely against a Personality’s upstream interface. With fully dynamic personalities,
however, this client’s request code needs to be accepted by an object that, at class-creation

time might not have known it would have had to support such a function.

For instance, in our Fl i er personality, the Fl y() function is expected from every object
that per soni fi es Flier. Therefore, with static personalities class Pel i can knows that
sooner or later a Fl y() request will come its way, and it can thus prepare for that. In the
dynamic personalities case, however, Pel i can does not know what personalities will
eventually be personified by itself, and thus it cannot prepare (i.e. have the Personalities/J
compiler add the FI y() method to the class implementation).

Since we would like to preserve the typing information at the client code, we still need to

come up with a solution to the problem of method dispatch. One potential mechanism in

* Defined in the next Chapter, Personalities/J is the name we have given to the Personalities-
based, Java-like programming language.

43

the absence of mutable dispatch tables is to mimic one by lifting all the functions in a
personality’s upstream interface into a generic “catch-all” function in charge of dispatching.
In the example above, for instance, the Personalities/J compiler would add the Fl y()
method and its parameter into the personalities list of available functions, while at the same
time modifying the client’s code to call the generic catch-all function with Fl y() as one of
its parameters. Each class must then implement this catch-all function which will unmarshall
the parameters and yield to the appropriate personality implementation. Notice that with this
approach, we can still preserve type-checking of the client’s code since that can be done
before the lifting phase. Code Sample 4 shows the original code, on the left, and pseudo-
code for the output of the compiler on the right, showing the lifting of the upstream
interface methods.

/Il Flier.pj /] after processing by Personalities/J
personality Flier { class Flier {
void Fly(...) { ... } void Fly(...) { ... }
} }
/1 Pelican. pj [/ all classes now are Personable
class Pelican { class Pelican inplenents Personable {
)).no Fly() in here! v0|d CATCHALL(String name, ...) {...}
}
/1 SkyWor | dShow. pj /1 The client’s code gets nutated into
cl ass SkyWor| dShow { cl ass SkyWr| dShow {
void perfornm(Flier aFlier) { voi d perform Personable aFlier) {
aFlier.Fly(10, 10, 10); aFlier. CATCHALL(“Fly”, 10, 10, 10);
} }

}
Code Sample 4: Lifting FI i er’s upstream interface and changing client code

The CATCHALL method, which is standard for all the classes in the system, plays the part of
a dynamic dispatch mechanism. There could be a standard framework in which the
parameters of this CATCHALL function are fixed and all calls are routed through it.
Furthermore, each personality could define the entry points and signatures for each of the
functions in its upstream interface, and these would both get added to a class’ dynamic
personality table at “personification” time.

44

Class’ Conformance to a Personality’s DI

Determining whether a given class can indeed personify a personality is a more complex
problem. Since we are now dealing with the dynamic attachment of personalities at runtime,
we need to make sure that the functions that are exported by the class do indeed fulfill the

personality’s downstream interface specifications.

In the absence of a computationally tractable way of specifying and validating the semantics
of a piece of software, we must place our trust in the programmer. In other words, when a
personality gets “attached” to an object, the programmer needs to implicitly (via identical
method signatures) or explicitly (via mapping from the personality’s DI signatures to the
class’ methods) specify how the class will fulfill the downstream interface. Thus, when the
programmer attachs the Fl i er personality to the Pel i can object we expect Pel i can to
either have methods named Ascend(), Takeof f (), etc. or the programmer to specify
which of the methods that Pel i can does have will perform each of these functions. These
maps can be generated on the fly at personification time. Also, the selective dispatching of
downstream interface functions from upstream method’s implementation using these maps
could be made part of a standard ancestor to all personalities pretty much in the similar way
that the CATCHALL method is part of every class. In that way, every personality will know

how to deal with maps at runtime.

Once we have determined that a given class does indeed have what it takes to personify
some personality, we still need to make it work. From Chapter 2 we know that the
personality’s upstream interface implementations need to talk back to the personifying class
through the downstream interface methods. Since we are working in a typeless, dynamic
environment, we cannot simply expect to call these downstream interface methods on the
personifying object reference since we don’t have access to the object’s type. This problem is
solved by making sure that 2/ the methods in a class are part of the CATCHALL scheme. In

this way, the upstream methods can use the same trick to call the downstream functions.

It is important to note that the approach mentioned above would work with any standard

programming language. Our purpose in this chapter is not to rely too heavily on a particular

45

language implementation but rather to understand the motivation behind these ideas. With
Java’s introspection facilities, however, these tasks become simpler and more streamlined,
since we can actively inquiry any class for the methods it supports and thus the no-map
personification process becomes very simple. Also, the upstream implementation becomes
simpler since we can now discover the type and functions of the object and call these

directly by creating invocations.

46

Chapter 4

PERSONALITIES/)

This chapter delves into the implementation details of the Personalities concept. Static
personalities are presented, followed by dynamic personalities. Appendix A contains the

complete source code for the code samples shown in this chapter.

A FEW WORDS ABOUT THE PROGRAMMING ENVIRONMENT

Our approach for implementing the Personalities/J language and compiler has been to
maintain, as much as possible, the familiar Java programming language environment.
However, we have made the underlying assumption that the programmer deals only with
Personalities/J modules and that the Java language is merely an intermediary step between
the . pj code and machine code.

We use the Java programming language as our target language, and rely on commercial Java
compilers to create the bytecode or the native machine language code. We decided in favor
of using delegation to implement Personalities/J. In retrospect, this was a good decision

since it helped us in the transition from static to dynamic personalities.

IMPLEMENTING STATIC PERSONALITIES

Static personalities, although not as powerful as their dynamic counterpart, help us lay the

foundations of the implementation of the Personalities concept.

JAVA AND INTERFACES

If we were relying on a language that supported multiple inheritance, such as C++, then the

implementation might have been somewhat eased (with the Personalities/J compiler

47

concentrating mostly on enforcing the additional semantic constraints that Personalities
impose over multiple inheritance semantics). Our target language, Java, on the other hand

does not support multiple inheritance. It does, however, support znzerfaces.

Interfaces, as understood in the Java programming language, allow a class to advertise the
implementation of selected methods by declaring its compliance with arbitrary sets of
method signatures called interfaces. An interface contains only method signatures but no

implementation. We use Java interfaces as a tool to implement Personalities.

THE MAPPING PROCESS

The steps to define a personality have already been presented in Chapter 2 (See Code Sample
1, for instance). Similarly, how to make a class personify a personality has also been
explained (See Code Sample 2). We have not, however, described how a client system can
make use of a class that personifies a given personality, or the details of the Java code that

the Personalities/J compiler generates.

Using a Class that Personifies

In a nutshell, using a class that has a given personality is as simple as casting the class to the
appropriate personality and simply calling its upstream interface methods. Code Sample 4
shows the prototype of a simple client that gets an object, casts it to a Fl i er *“object”, and
calls its personality-defined FI y() method.

/1l ... client that uses a class that personifies the

/1l ... Flier personality, reference is passed as bject
/[l ... but the client knows that the “object” actually
/1l ... personifies a Flier

voi d DoSonet hi ngWt hAFI i er (Cbj ect anObj ect) {
Flier aFlier = (Flier)anCbject;
aFlier.Fly(10, 10, 10);
}
Code Sample 4: A client using an object that personifies Fl i er

It is important to notice that there is an underlying assumption about the amount of
knowledge the client has about the class. In other words, even though the client is passed an

Obj ect, it does know that this object actually personifies Flier. This is not an

48

insurmountable constraint since clients are hopefully designed to know their objects, and
delegate to other clients that know only (and are built for) a given specific Personality. We

call these the “knowing” and “unknowing” clients, respectively.

void main() {

/1 ... taken from Zoo.pj [static] in Appendix-A
/1 ... knowing client sets up its data structs.
Vector all_swimers = new Vector();

/Il ... classes are created. This “knowi ng” client
/1 ... knows how to classify them Notice how it
/1 ... puts the object into the appropriate vector
// ... depending on whether it personifies Sw nmer,
/1 ... Flier, Junper, or Wl ker

SealLion toto = new Sealion();

t ot 0. set Nane(" Tot 0") ;

al | _swi mrers. addEl enrent (toto); // personifies Sw nmrer
al | _wal kers. addEl enrent (toto); // personifies Wl ker
al | _j unpers. addEl enment (toto); // personifies Junper

/1 ... when this clients needs to do work, however,

// ... it delegates to other functions (potentially

/1 ... entire systens that are built only to the

/1 ... personality interface. For instance, it del egates
/1 ... to Pool Show(), but notice how it casts the object
[l ... first

for(int i=0; i < all_swi nmers.size(); i++)

Pool Show ((Swi nmer)al | _swi nmmers. el enent At (i));

/1 ... this “unknowi ng” client knows only about

/1 ... the personality it cares about.

static voi d Pool Showm Swi mrer sw mrer) {
Systemout.println(" Pool Show with " + sw nmmer);
swmrer.Swnm 1, 1); // and uses its U

Code Sample 5: Knowing and Unknowing clients

Code Sample 5, for instance, has been taken from Zoo. pj [static version] in Appendix A.
We can see both types of uses of the object. First, the knowing client (mai n() in the
sample) has full knowledge of the class it creates and its associated personalities. It can
therefore cast it safely to any of the given personalities. Second, the unknowing client
(Pool Show() in the sample) does not know about sea lions, pelicans, or whales. It has been
designed and written to work only with Swi mrer objects. While in the examples in this
thesis there’s not too much of an explicit separation between these two types of clients, they

are the cornerstone of the usability of the Personalities concept. We expect, therefore, for

49

these two “clients” to actually be entire systems, the unknowing ones built on top of the
personalities’ upstream interfaces, whereas the knowing ones (i.e. the “factories”) are

enterprise/domain dependent.

Mapping to Java

Each . pj generates at least one .j ava file. Figure 8 shows a representative set of
Personalities/J files and the Java files they generate. Consult Appendix-A for the source

code of a complete example.

Flier.java
interface Flier
. _)
Flier.pj
personal ity Flier
{1 Fli er$Ego. j ava
class Fier$Ego
> $Eg
{ ...}
Bat . pi Bat . j ava
class Bat c!ass Bat)
personi fies Flier ——pp| inplenents Flier
{...)
Z00. pj Z00. j ava
class Zoo class Zoo
{ ... Il uses} t—p { ... /] uses}

Figure 8: Generated Java files

A personality definition (i.e. Flier.java) generates two files. The first is simply the
definition of a Java interface that encapsulates the upstream interface methods. In order to
simplify the Personality infrastructure, this interface also includes the downstream interface
methods. On the surface, this might appear to go against the goals of this work about
separating the two interfaces. However, the Personalities/J compiler performs syntax and
semantic analysis on the set of . pj files (which do separate between downstream and
upstream interfaces). Furthermore, all of the Java files are deterministically and automatically
generated by the compiler from the set of . pj files. We are thus guaranteed (assuming the

50

compiler works as advertised, of course) that clients are not accessing the downstream

interface methods, even though they might look accessible via Java®.

Once the Personalities/J compiler has finished its work, the set of generated Java files are
arranged according to the diagram of Figure 9°. The relationship between the client system
(class Zoo) and the personalities’ interfaces are not shown to keep the diagram readable.
However, bear in mind that class Zoo actually contains two types of client methods, one
that knows about its objects (shown) and several that only know about the personalities (not

shown).

The personifying classes make use of the $Ego classes to implement the Personality defined
behavior. The compiler inserts the code for the aggregation when it generates the Java files.
It also generates proxies for the personalities’ upstream interface methods. This is all done
automatically from the . pj files. Code Sample 6, extracted from Appendix A, shows the
Seali on. java file. Notice how the compiler has inserted the code for creating
Swi mer $Ego, Wl ker $Ego, and Junper $Ego. In addition, it has inserted the proxies
for Swi (), Wl k() , and Junp() that correspond to each of the personalities the sea lion
personifies. Code Sample 11 shows the algorithm for generating these files.

The $Ego classes implement the personality defined behavior. Since that behavior depends
on the class-defined downstream interface implementation, the $Ego classes need an
instance of the class to be able to call its downstream interface methods. This is where

defining the Java interface to contain both upstream and downstream interface methods

> In this thesis we ignore the problem presented by potential name clashes in the face of
multiple per soni fi es statements. While important, the solution to that problem is
somewhat orthogonal to the issues being addressed in this thesis. Furthermore, a solution
to such a problem would benefit not only Personalities but also other programming
languages. We thus ignore the problem altogether and assume the more common model of
aborting compilation when clashes exist.

® The $ sign in the identifiers has been replaced by an underscore () because of
diagramming tool inadequacies

51

becomes useful. We can thus use the Personality “type” in the $Ego classes as the host

parameter and use it to delegate back. Code Sample 7 shows the Swi nmer $Ego class.

b O W TR
| Jup TR | | el
;_ll:nﬂ

; e ;v

i g)
;mll:-l

+ BFig| i iy, ol v |
| Pakud) | vedl i
- Bl | e i
+ Thasw'Vet:| il o, s Emodacm ¢
g Tkt | iy |
¢ Wi | 5] vl]
¢ Lomdj o

S e

Chealulmoninl Lnly i e
imLimpi-=d

L)

Lol o] s} iymiell

Trated Ega

Fimes | Toser bl
+Ilu-||_l-|-|-||: e

taillan Wha Bat Palism
L B el B R e Mt et i Pl B L L T
ek Wb e ke e Tram et b = il ViEe By o Malkn b
I e erworyrdul] il B T i
“"!""IF"“_-_ 4-!'. e e P # Thassrt jind iy - B Edainily v
bt | W |2 FigTemnde | mie, g vl b Theeri il ik y o e
Ayl eod | ntlening | - M ~Prapd| i i :b.,'..“:-:u." . !W_|i!L'|ﬂ
:‘I-:‘III: § | Pl v #Comemnad | - ved
Iefmai i + Bl | ool P | il iy, i L v
A JuupiaThalian | |. il il | i _a : & Foquine | |:vaed
4y | A REA 1 R L E TR
AR v i bl ..,-" L e P e
:-I|I'=l"l s + IO | W5 P Rk T
Swnp el Traiomar | - [T N R Elmn| | b
A DT W) & LiFR0e i o v :H-lHI:.IH-p.H-bI- o
4 |, AL | e F A e
‘_IIIIH':NMI 4 S B WA, s vl i :
e e — el el
AVl BT | i
i Jump il ind . ol e
1
\.I\n =
/ & | g e v
,__4___. P P s | S i - vl
Forbd 5o | b o v vl
ekt il 1l el
& R bk il e el R
i _lr“r
Ewieme_Eg Flm_Ego mper_Eg Wik Ega
i e Pl —
1 G - ST B TL T Jvaed g | g el -, WA . Il) el i
+|—-| - cnpliy I!IF“F-'I-,-Il,I:Ih.-'-rIl i B 1 T
Flei_Egm | |-

Figure 9: Generated Java system’s relationships'

52

Code Sample 6: SealLi on. j ava’

Code Sample 7: Swi mrer $Ego. j ava’

The implementation of the $Ego classes, however, is basically identical to that present in the
personality definition itself. The compiler needs to make sure it places the reference to the

" Code automatically inserted by the Personalities/J compiler is shown in bold typeface.

host variable in a few critical locations. The algorithm presented in Code Sample 8 can help

explain the process by which the compiler determines how to create the $Ego files.

/ * process_method: given personality P and method m,
insert host wherever appropriate */
proc process_method(P, m) {
ret <— return type of «m»
nam <— name of <«
par < parameter list of «m»
println(‘public “+ «retr + ““+ cnanmr+
C+ «Pr+ “host, “+aparm + 9 {“)
Jor each statement stm in «m» do
Jor each token tok in «stm» do
if «toky is not a function call
print(«tok»)
else
if «toky is part of the DI of «P»
print(‘host. " + «tok»)
else
print(«tok»)
endif
endif
endfor
println()
endfor

println(4 ”)
endproc

/* Generate the $Ego file given «P» */
proc gen_ego(P)
println(“public class “+ «P» + ‘$Ego”)
printin(L)
Soreach Ul method uimt in «P» do
process_method(«uim»)
endfor
Joreach private data menber mbr in «P» do
println(“private “+ «mbry»)
endfor
Joreach private function pfn in «P» do
println(«pfiny)
endfor
println(‘public “+ «P» + ‘$Ego() {”)
con «— constructor of «P»
process_method(«con»)
printin(‘Y }7)
endproc

Code Sample 8: Pseudo code for generating the $Ego classes

Last, but certainly not least, the Personalities/J compiler must generate the Java interface file.
Code Sample 9 shows an example of such a file for the Swi nmer personality, whereas Code

Sample 10 presents the simple algorithm to generate these interfaces.

// Swimer.java [static]
interface Sw mrer

{

voi d Junpl nTheWat er () ;
voi d Subnerge();

voi d MoveFin();

void Rise();

public void Swin(int mles,

voi d JunpQut O TheWat er () ;

Code Sample 9: The Java interface Swi mer . j ava®

}

int depth);

8 Code automatically generated by the Personalities/J compiler is shown in bold typeface.

54

Figure 10 shows a dynamic view of a client instantiating a new object that in turns
personifies the Swi nmer personality. The client in the diagram (aZoo) is not involved in
creating the different $Ego classes for the object. The code automatically inserted by the
Personalities/J compiler takes care of that and the whole process is transparent to aZoo,

who needs to know only how to create a SeaLi on named t ot o, and nothing else.

ALOO.Z00 toto:Sealion _swimmer:Swimmet Ego
1: Seali .
- Sealion) 2: SWimmELEgDG’Ij
|
1 |
| 1 |

== MNofatlon ==

Instantiation of a newobject. The client system (aZoo) simply creates
a newinstance ofthe domain-based class (Sealion). Sealion's
constructor (modified by F ersonalitiess]), creates an instance of
Swimmer}E go (shown) and also instances for YWalker$E go and
Jumper$E go {not shown).

Figure 10: Creation of objects and their associated $Ego classes’

[* gen_interface: given personality P create the interface file */
proc gen_interface(P)
println(‘I nterface “+ «P» + 1)
Soreach Ul method uimt in «P» do
$ig «— signature of «uim»
println(«sig»)
endfor
Soreach DI method dim in «P» do
printin(«dinm»)
endfor
println(“}”)
endproc

Code Sample 10: Pseudo code for generating the Java interface file

% The $ sign in the identifiers has been replaced by an underscore () because of
diagramming tool inadequacies

55

| * gen_class: generate the Java file for the class println(“inpl enents “+ «mpy)
definition given the class PJ file C */ endif
proc gen_class(C) endif
ext «— parent of «C» printin(‘L)
println(‘public class “+ «C») bod < body of «C»
if wexty is not empty println(«body)
println(“extends “+ «wexty) Joreach personality p in «per» do
endif Pp < «p» with first letter’s case changed
per <— personifies list of «Cy println(«p» + ‘$Ego $7 + ppy +
if «per» is not empty S new “+ @» + $Ego();)
if wexty is not empty Soreach Ul method uine in «p» do
print(<,) ret «— return type of «uiny
endif nam <— nane of «uiny
print(“inpl enents “+ per») par «— parameter list of «uin»
endif printin(“public “+ wety + ““+
imp < implements list of «C» anam» + (“+ parr + 9§ {©)
if «amp» is not empty println(‘87 + «pp» + 7+ «nam»
if «per» is not empty + “this, “H @am+9; 1”7)
print(«impy) endfor
else endfor
if wexty is not empty printin(‘4 ”)
print(“ ") endproc
endif

Code Sample 11: Pseudo-code for creating the Java class files

Figure 11 shows a sequence diagram corresponding to a client (aZoo) accessing our
previously created Seali on t ot 0. The client uses the Swi n{) method, which is part of
Swi nmrer ’s upstream interface to contact t ot o. The proxy code that has been inserted by
the Personalities/J compiler in the Sealion class immediately delegates to the
Swi nrer $Ego instance, which was previously created at construction time. The proxy,
however, adds a reference to itself (i.e. its class) on the call to Swi nmer $Ego, so that the
latter can call t ot o back for its implementation of the downstream interface methods.

THE CHANGES FOR DYNAMIC PERSONALITIES

Chapter 3 presented two approaches for dynamic personalities. In this work, we will present
our implementation of Indecisive Personalities, leaving an implementation of the fully

dynamic approach for future work. It is the author’s belief that the constraints imposed by

indecisive personalities are not drastic, and more than offset by the simplicity of the

implementation.

56

AZooZoo

toto:Sealion _swimmer:Swimmer Eqo

—

Using a personality. The calls between aZoo and toto are always

1: Swirn(1,1) 2]]
= 2 Swimn(this, 1 .1)

3: JumplnTheWater()

B 4: Sub
ot : Subrmergel)
5: MaveFinD)
el
B Ri
ot isel)
7 JumpOutOfThe\Water)
el
L
T |
| |

=< MNofafion ==

using the Swimmer personality's upstream interface methods (or other
personalities toto might personify). Once the Swim() call is received,

the stub inserted by the P ersonalitiesd) compiler immediately delegates

tothe Swimmer$E go instance while passing itself as a reference. The
Swimmer$E go instance uses that reference to call back ta the object
for the downstream interface methods' implemertation.

Figure 11: Using an upstream interface method"®

When defining the implementation patterns for dynamic personalities, we strived to make
the changes as small as possible, both in the user-space code (i.e. the *. pj files) and in the
Java-space code. Thus, we do not require any changes at all in the *. pj files for the
personality and the classes’ definitions. We do, however, require changes in the client’s code,
since it must now deal with the additional behavior of “attaching” and “detaching” a

personality.

19 The $ sign in the identifiers has been replaced by an underscore () because of

diagramming tool inadequacies

S7

PERSONALITIES’ PROTOCOL

In order to bring some commonality to all personalities, we extended the concept and
provided the interface shown in Figure 12, supported automatically by the system, for all

personalities.

personi fy(“<personality>") Enable personification of <per sonal i t y>

forget(“<personality>") Disable personification of <per sonal i t y>

personifies(“<personality>") |Returns true or false depending on
whether <per sonal i t y> is enabled in the
class.

personalities() Returns a Vector of Strings with the
names of all the personalities that are enabled in
the class.

Figure 12: Dynamic Personalities’ common protocol

CLIENT CODE CHANGES

In our running example (see Appendix A), we have made the assumption that the client code
is the one responsible for updating the state of its classes. For example, we assume that the
client code (i.e. Zoo. pj) will enable and disable the personalities for the animals in the Zoo.
This assumption is not entirely correct, as any class with a reference to the object and
knowledge of the object’s personifies set could have directed the object to enable or disable
a given personality. This is arguably not strong enough. We have not addressed the issue of
restricting the protocol-defined operations that a client class can perform on a personifying
class in this work. Creating a more secure way for updating the state of a class with respect

to its list of enabled personalities is left as a future work.

The client code, therefore, needs first to create an object, and enable/disable personalities as
it sees fit. Code Sample 12 shows an abbreviated version of the Zoo. pj client shown in
Appendix A. Notice how the client enables or activates the different personalities. It also

disables them through f or get () . Last, notice how the client can check for the state of any

58

given personality before dispatching a call. Alternatively, it could dispatch and receive an

error or exception.

/'l smal | Zoo. pj
void main() {
/] create a new obj ect
Sealion toto = new Sealion();
toto. personify(“Swimer”); // enable Sw mer
tot o. personi fy("Junper"); /1 and Junper
/1 this should print [Sw nmer, Junper]
Systemout. println(toto. personalities());
toto. personi fy("Wl ker"); /'l enabl e Wal ker
DoShow(t ot 0) ;
toto.forget("Walker");
toto.forget("Junper");
toto.forget(“Sw mer”);

}
voi d DoShow(bj ect ani mal) {
if (animal.personifies("Sw mrer")
((Swi mmer) . ani mal). Swi n(10, 10) ;
if (animal.personifies("Walker"))
((\wal ker) . ani mal). Wal k(10, 10);
if (animal.personifies("Flier"))
((Flier).animl).Fly(10, 10, 10);
if (animal.personifies("Junper"))
((Junper). ani mal). Junp(10, 10);

Code Sample 12: A dynamic client

THE GENERATED JAVA CODE

The Personalities/J compiler generates pretty much the same files as for the static case. The
contents of the files, however, are slightly modified to support keeping the personalities table
at each class. We define a class, Shri nk, which keeps the list of the personalities that are
being enabled. This class acts as a singleton on a given inheritance chain. That is, there
should be only one Shri nk object in the chain, and it should be located at the topmost class
that personifies anything. Code Sample 13 shows a simple algorithm for making sure the
Shri nk class is allocated appropriately.

/* add_shrink: given class definition ¢ from cjava, per <— personifies list of «e»

put the Shrink object and proxiies in ¢.java */ if «per» is not empty
proc add_shrink(¢) f— w»

mbr <— data members of «o» endif

if «combry does not contain “Shrink $shrink” ext «— extends of «»

mbr <« «mbry + if wexct» is not empty

‘orotected Shrink $shrink=new Shrink(); Place_shrink(«exty, «f»)

publ i c bool ean personify(String what) else

{ return $shrink.personify(what); } .

publ i c bool ean personifies(String what) add_shrink(>)

{ return $shrink.personifies(what); } mdzf

public bool ean forget(String what) endproc

{ return $shrink.forget(what); }
publ i c bool ean canpersonify(String what)
{ return $shrink. canpersonify(what); } /¥ do_shrink: starts the process of finding the

public Vector personalities() right place to put the Shrink object */

. P . “«

{ Lr{je[t urn $shrink. personalities(); } prozdo_x/m'mé(C)

endy, -

er <— personifies list of «Cy»
recreate «c.java using new «mbr» P ’) o of
J if «per» is not empty
enaproc place_shrink(«C», «C»)
endif

| * place_shrink: utility function to keep last plansible
Shrink placement while searching for a new one */

proc place_shrink(c, f)

endproc

Code Sample 13: Adding Shr i nk at the correct place in the inheritance chain

Once we have the Shri nk instance properly located in the chain, we can modify the code
for the classes in the inheritance chain. Each $Ego class will now use the Shri nk object as
a repository for the personalities. Thus, the chain-singleton Shri nk is passed to the $Ego
classes in its construction. Also, all the proxy stubs for the upstream interface functions now
check to make sure that the object has the personality “enabled” before delegating. Code

Sample 14 shows the algorithm for generating these classes (changes in bold).

/ * gen_class: generate the Java file for the class endif

definition given the class PJ file C [dynamic] */ endif
proc gen_class(C) println(‘T)
ext «— parent of «C» bod < body of «C»
println(“public class “+ «C») println(«body)
if «ext is not empty do_shrink(«C»)
println(“extends “+ «exty) Joreach personality p in «per» do
endif Pp < <«p» with first letter’s case changed
per <— personifies list of «C» println(«p» + ‘$Ego $” + «@ppr +
if «per» is not empty ‘S new “+ @» + “$Ego($shrink);)
if wexty is not empty Soreach Ul method uime in «p» do
print(") ret <— return type of «uim»
endif nam <— name of «uiny
print(“inplenents “+ «pery) par < parameter list of «uim»
endif println(“public “+ qrety + ““+
imp <— implements list of «C» anam» + (“+ parr + 9§ {9)
if <imp is not empty printin(“i f (personifies(“+
if «per» is not empty «p» + 7))
print(«impy) println(‘$” + «ppy + 7+ qnamy
else + “{this, “+@par+9; }”)
if wexty is not empty endfor
print() endfor
endif printin(‘}”)
println(“inpl enents “+ «npy) endproc

Code Sample 14: Generating Java class files (dynamic version)

The $Ego classes, in turn, are the living proof that this object personifies the personality.
Thus, it is the perfect place where to implement the registration with the Shri nk object.
Each $Ego class thus needs to register itself with the Shri nk. Personalities/J needs to
modify the creation of the $Ego files slightly to accommodate this requirement. Code
Sample 15 shows the new algorithm, with the only change being adding an input parameter
to the constructor (the shri nk object), and always generating a non-empty constructor that

registers the personality with the shrink (shown in bold).

/ * process_method: given personality P and method m,
insert host wherever appropriate [dynamic] */
proc process_method(P, m) {
ret < return type of «my
nam <— name of «m»
par «— parameter list of «m»
println(“public “+ «retr + “ 4 cnanmr+
C+ «Pr+ “host, “+aparm + 9 {“)
Jor each statement stm in «m» do
Jor each token tok in «stm» do
if «toky is not a function call
print(«toky)
else
if «toky is part of the DI of «P»
print(‘host. 7 + «tok»)
else
print(«tok»)
endif
endif
endfor
println()
endfor
println(}”)

endproc

/* Generate the $Ego file given «P» */
proc gen_ego(P)

println(“public class “+ «P» + ‘$Ego”’)

println(‘4)

Soreach Ul method uim in «P» do
process_method(«uiny)

endfor

Jforeach private data member mbr in «P» do
println(“private “+ «wmbr»)
endfor

Jforeach private function pfn in «P» do
printin(«pfny)
endfor

println(“public “+ «P» +

“$Ego(Shrink shrink) {”)
con < constructor of «P»
process_method(«con»)
println(“shri nk. regi st er _personal i ty(“
+ «P» + ;)

println(Y }7)

endproc

Code Sample 15: Generating $Ego files for the dynamic case

62

Chapter 5

PERSONALITIES AND THEIR BIG COUSINS

As explained in previous chapters, personalities only claim to help in the micro-framework
space. Getting more ambitious and thinking about system-wide scope, there exist a number
of approaches for encapsulating behavior. Frameworks are the most common case. We
explore how Personalities can help Frameworks by becoming the join points. We then

briefly consider other, more advanced, collaboration-based works.

FRAMEWORKS AND PERSONALITIES

The concept of personalities turns out to be a good vehicle for embodying the Jozpors in a
framework. The hotspots are those classes that a user of a framework needs to either
subclass or specialize in some way to “adapt” the framework to her application. In the
general case, these hotspots are abstract classes that need to be subclassed by the application
developer. We claim that using personalities as hotspots is a cleaner approach and it also

overcomes certain programming language limitations.

ADAPTING A FRAMEWORK USING HOTSPOTS

A framework can be characterized as a collection of classes that embody a certain number of
specific behaviors. Just as personalities encapsulate functionality in their upstream interface
methods’ implementation, frameworks encapsulate functionality through the interactions of
several prototypical classes. Designing at the framework level is desirable because you can
concentrate on the semantics of the functions you are trying to implement, without being
bothered by the specific details of the class graph that will eventually embody the
framework. In other words, frameworks assume an “ideal” situation and implement their

behavior in that vacuum.

63

However, in order for frameworks to be usable, they need to be “plugged” or adapted into
an application'!. The framework developer identifies the pieces of information that are
required from the application. These will be later used to customize the framework (which is
supposed to be generic) to each specific application. The pieces of information that are
required from the application usually take the form of classes in object-oriented
programming but object-oriented programming is by no means a requirement for the
existence of frameworks. As a matter of fact, some of the more successful frameworks so far
are not dependent on object-oriented programming languages. For instance, The X Window

System, is based in the C programming language.

Once the hotspots have been identified, there are potentially two ways in which an
application “connects” itself with the framework:

1. Using inheritance: the application developer subclasses the hotspot classes and

implements a number of abstract methods (only applicable with OO).

2. Using delegation: the application developer implements a set of predefined method

in her own classes and then ‘registers’ these classes with the framework.

Using inheritance is a simpler approach since the application developer need not worry
about specifically instantiating and registering the two different sets of objects (i.e. the
framework objects and the application objects). However, class inheritance is not convenient
when you have one of the following situations:

= There is one application-level class that could be used to embody two or more

framework-level classes.

= The application-level class that can embody the framework-level class is already

inheriting from another application-level class.

1 Whether the framework is “adapted” to the application or the application “adapts” to the
framework is a subject of heated dispute among practitioners ©.

64

Framework
P Hot spot s
l/ _—'/
I
- =
Application A Application B
v

Figure 13: Subclassing hotspots in framework instantiation

Both these situations lead to the need for multiple inheritance. Alternatively, adapters and/or
proxy classes [Gamma94] need to be created and maintained. Figure 13 depicts these two
problems. A framework with two hotspots is adapted by two different applications.
“Application A” has one class that can potentially subsume the functionality of both
hotspots, leading to multiple inheritance, while “Application B” has a class that provides the
functionality for one of the framework’s hotspots but it is already extending another class in

the application, which again leads to multiple inheritance.

Using delegation as the mechanism for joining an application with a framework avoids these
problems at a considerable expense in complexity. The application developer must now
make sure that the appropriate application classes are registered with the framework so they
can be called by it as part of the behavior the framework encapsulates. Delegation has
another side effect that might be undesirable. Since at runtime there will be two live objects,
the hotspot object and the delegation object, two object references will need to be
maintained. A decision needs to be made as to which object identity prevails at each layer of
abstraction. Since the framework will unavoidably call its own hotspot “object” for the

behavior it needs, the identity of the hotspot object seems to prevail. However, that object

65

reference will potentially not be enough for other application-level client objects since they
might need to interact with the object through a protocol not covered in the framework’s.
Using delegation of protocol, as presented in [Wieringa95] is a theoretic solution to this
problem. It essentially states that all methods not covered in the receiving object’s repertoire
should be passed on to the object associated to it. However, this solution will not work in
strongly typed languages, such as Java, since the hotspot type cannot be “cast” to the

application type. Figure 14 shows this problem in more detail.

_—————

/7 A -
7 Hot spot A > 7 Hot spot B \ | Hot spotinpl i
/
/o lattra int) -attrB: int N +void fwork();
y void fwork() i - hsi : Hot Spot | npl ! /ﬂ
!)
/ \ N evoid fwork() { / /
/ \ S . 7 /
! \ S, hsi.fwork();} ,/ /
1 \ AN /
i : Ny /
] =< -
'. ! OID: Hots potB@OX0He54 ey
¢ Appd assA ! / S~
\ -appAttr Aint ! / Appd assB ™
‘\ H U / \
\ +void fwork(){...} [-appAttrBiint !
\ |+void appFn(){...} | ,)
\ \ +void fwork(){...} H
S +void appFn(){...}| /

\ .

\ -

-

Ve
,

N N
OID: Hots potA @0x0ffe 23 e oID: ,\AhQCIass B@OxOffade .

voi d client (HotspotB hs) {

k hs. f work(); /1 ok

/'l o
/1 ok ((AppCl assB)hs). appFn(); // error!
/1l invalid cast

voi d client (HotspotA hs) {

hs. f work();
((AppCl assA)hs). appFn();

Figure 14: Delegation and object identity

PERSONALITIES AS HOTSPOTS

A better mechanism for implementing the hotspots in a framework is required. We believe
the Personalities concept is ideally suited for this purpose. By making each hotspot a
personality, we take advantage of all the personality’s additional semantics and compile-time
validation checks. Furthermore, we allow application developers to freely personify hotspots

66

in a clean, inheritance-like way, while still solving the different problems presented in the

previous section.

Personalities do encapsulate behavior at the micro-level. Being a realization of the template-
method pattern [Gamma94], they impose a sequence of lower-granularity operations for a
given high-level operation. We feel such a separation is healthy and forces the framework
developer to clearly define the semantics that she will require from the application developer.
Framework developers, however, might have defined completely empty classes, with no
implementation whatsoever. In these cases, the personality could degenerate to provide a
pass-through for all its downstream interface functions. While the additional benefits of the
template method pattern would be lost, the developers can still leverage the preservation of

identity and the freedom from the multiple inheritance problem that personalities provide.

PERSONALITIES AS TRAFFIC COPS

Our main point in proposing personalities as the glue between any collaboration-based
encapsulation of behavior (i.e. frameworks/APPCs/CGVs, etc) is that personalities’ clear

semantics can significantly ease the job of plugging frameworks together.

ShowFramework
ShowD rector

. class ShowDirector {
Flier - Vector fliers=new Vector();
Fe————
r—————— E_ voi d do_show(int a) {
e for(int i=0; i<fliers.size(); i++) {
17ty Fli Flier aFlier=
perscna 1ty Flier { (Flier)fliers. el enentAt(i);
Voi y(int a) { A = !
Takeof f() ; aFH ier.Fly(a);
Flap(a); }
Land(); } }}
di void Takeoff(); 7
di void H ap(int);
di void Land();

Figure 15: ShowFr anewor k with Fl i er as hotspot

67

As an illustrative example, let’s consider the case where we have decided to purchase a
ShowFr amewor k framework for our Zoo system. For the sake of simplicity, we’ll omit
most of the details and will make Showrr amewor k only deal with air shows. As such, the
framework needs to know only about the Fli er personality. Fl i er contains all the
semantics that ShowFr amewor k requires to perform its job. Figure 15 shows a diagram
with some pseudo-code for one of ShowFr anewor k’s classes and a simplified version of
the Fl i er personality.

Now imagine that instead of wanting to build a flying show for the Zoo, you decide to build
a flying demonstration for a plane show. What you need to do, then, is to personify Fl i er
in your application (i.e. Takeof f (), Fl ap(), and Land()) and off you go. However, you
early on realize that most of your planes actually takeoff and land in pretty much the same
way. Thus, you decide to obtain another framework (from potentially another manufacturer)
that encapsulates the behavior of mechanical planes that need to takeoff and land the way
planes do. Let’s call this the Takeof f AndLandFr anewor k.

TakeoffAndLandFramework

MechFl ier
class MechFlier {
LandGear - LandGear | g = MechFact . makeLandGear () ;
Fe————— PR
P eeeee - void takeoff () {
e - o -
personal ity LandGear { I'g.up();
void dow() { .
if (_state = UP) { vo! ddland() {
servon(); g. down() ;
ser voMove();
servodf () ; }}
}
} f7
void up() { ... }
)

Figure 16: Takeof f AndLandFr amewor k with LandGear as hotspot

It is quite possible that this Takeof f AndLandFr amewor k provides the application
developer with one (or more) functions to trigger the execution (just as the do_show()

68

function in the ShowDi r ect or class is the entry point in the ShowFr anewor k shown in
Figure 15). For the sake of simplicity, let's assume that these functions are called
t akeof f () and | and() respectively. Figure 16 shows a diagram of this framework. It uses
personality LandGear as its hotspot. Some details have been omitted to keep the diagram

uncluttered.

So now you have purchased two different frameworks that might ease your job as the
application developer. Still, you need to glue them together. As explained in a previous
section, personalities can be used as hotspots very effectively to overcome some of the
programming language limitations that might arise in the use of frameworks. Personalities
also provide a nice demarcation point between frameworks. What is more, this demarcation
point is (usually) not shallow, but rather contains behavior in itself. This helps reinforce the
semantics required of the downstream interface from the application. In keeping with the
current example, you might have an application that looks like Figure 17. There are two

simple associated hierarchies, one for planes and another for wheels of planes.

PlaneApp

Pl ane \Wheel s

B747; V\at:erPI ane ; _\ [T~

class Pane { ... }

BWieel Wheel class B747 extends Plane { ...
class Wter Pl ane extends Pl ane

{...}

class Weels { ... }
class Bwheel extends Weels { ... }
class W\heel extends Weels { ... }

7

Figure 17: Pl aneApp, the original application

The goal would be to make wuse of the ShowFranework and the
Takeof f AndLandFr amewor k wherever possible. For that, we need to plug into the
hotspots Fl i er and LandGear, respectively. Furthermore, we realize that while our

69

“wheeled” planes can (and should) use the Takeof f AndLandFr anewor k, our water

planes obviously should not, since they do not even have wheels'?.

There are at least two alternatives to achieve our goals: composing frameworks automatically
using personalities, and delegating the composition to the client’s code. Let’s examine each
of these in detail.

Composing Frameworks using Personalities

The most obvious approach is to create a new framework composing both. For instance, the
Show _Takeof f AndLandFr anewor k, shown in Figure 18, would support the
do_show() interface and will require LandGear as its hotspot. This has in effect achieved
an increase of granularity plus a decrease of abstraction in the hotspot (i.e. more control)

while preserving the high-level behavior (i.e. do_show()).

The process of composing two, already-existent frameworks can be automated through the
use of a compiler that we will call a compositor process. Figure 18 shows the changes that the
compositor needs to make to the frameworks in bold typeface. The reader might notice that
the naming conventions used in this example are conspicuously similar. In other words, it
was not by chance that the Flier personality requires Takeof f() and that the
MechFl i er class provides t akeof f () ! In other words, composing frameworks does not

just “happen”, but rather it should be a well thought-out process.

Another interesting point has to do with the completeness of the composition. In the
example, we see that the Takeof f AndLandFr anewor k will provide behavior for both
Takeof f () and Land() but is clueless about what to do with Fl ap() . The compositor
process therefore needs to determine which ones of the first framework’s hotspot
downstream interface methods will be provided and for those that will not, a new hotspot

needs to be created that simply proxies the original DI signature with identical semantics.

12 For reasons of symmetry, these “null” wheel classes (i.e. Whheel) are usually still modeled
and given empty behavior.

70

That is why in our example, the final application will need to personify both
Partial Flier and LandGear. The second framework class(es) that personify the
hotspots of the first framework will get these “partial” personifying objects at runtime much
in the same way any personifying object is bound. Also, the first framework’s hotspot (i.e.
Fl i er) is still available if the application decided to use only that part of the composed
framework. Once the compositor has finished, we are left with a separate and complete
framework that in no way depends on the other ones. It is in essence a new entity that we
can use to develop systems. Changes in the original frameworks will obviously not be

propagated to the new one, but then again running the compositor is trivial.

Show TakeoffAndLandFramework
Show Framework

ShowD rector class MechFlier personifies Flier {
LandGear | g = MechFact . nakeLandGear () ;

voi d takeoff () {

Flier I g up();

t-=--==t yoid land() {
[I g.down() ;

/ /0y
<<personi fj’es>>, Il --- for Flier
TakeoffAndLandFamework 7 e Parti al Fli er pf = getFromipp();
. 4 void Takeoff () { takeoff(); }
MechHl ier void Land() ~ { land(): }
’ void Flap(int a) { pf.PartialFlap(a); }

4

PartialFlie LangGear
R S |
| | [
To----- e I personal ity Partial Flier {
tmomwsnl e ’ void Partial Flap(int a) { Flap(a);}

di void Hap(int a);
}

Figure 18: Composing two frameworks intrusively

Figure 19 shows our plane application using this composed framework. Notice how we
make use of the fact that we can selectively use the first half of the composed framework
(for our Wat er Pl ane) and the entire framework for our Boeing plane. The underlying

71

assumption is, of course, that B747 planes will contain BvWheel classes. We thus need to
personify LandGear at the Bwheel class and take care of the “rest” of the original Fl i er

interface at the B747 class (by personifying Parti al Fl i er).

Show_TakeoffAndLandFramework
- class Plane { ...
do_show() class B747 extends Pl ane,

personi fies Partial Flier {
Partial _I\/L

void Flap(int a) { ...}

class Water Pl ane extends Pl ane,
l—-x==) B Sk '-7{--' personi fies Flier {
/

/ / void Takeof f() { ... }
[1 void Flap(int a) { ... }
Plane / \heel s void Land() { ...}
/

' }
i e~ /| class Weels { ... }

/ class Bwheel ext ends Weel s,

}
[} ’ { /
{] . .
B747 ; V\a:t -erPI ane ! ad personi fi es LandGear {

void servoon() { ... }
I void servoMove() { ... }
PlaneApp BWieel Witheel void servoOff() { ... }

}
class Whheel extends Weel s {.. }7

Figure 19: The plane application using the composed framework

Delegating Composition to the Application’s Code

The previous solution for composing frameworks using personalities involve intrusive
modifications to the original frameworks and effectively produces a brand new composed
framework. For cases where changes to the original frameworks are not possible, or when it
Is desirable to keep the original frameworks “intact” (in order, for instance, to automatically
install new versions or patches) then we can delay the composition infrastructure until the
client makes use of the framework. This option will undoubtedly require more effort from
the application developer, but it keeps the two (or more) frameworks being composed

relatively isolated from each other.

To continue our running example, what we would need is to have all Pl anes personify

Fl i ers. The Wat er Pl ane, since it does not really have landing gear, will implement all the

12

Fl i er -required methods. The B747, on the other hand, can make use of the
Takeof f AndLandFr amewor k to implement that behavior. Since we are following a
delegation model, all we really need to do is make sure that the B747 class “has” an instance
of the Takeof f AndLandFr amewor k and can invoke it’s high-level operations (that is,
t akeof f () and | and()). We can then simply adapt the Fl i er s requirements to these
functions. However, our picture would be only halfway complete, since for the
Takeof f AndLandFr amewor k to work we need to personify its own hotspots. We do this
much in the same way as we did it in the previous approach. Figure 20 depicts the situation

and presents the pseudo-code.

ShowFramework

do_show() .
void Takeoff () {}

tvj void Land() {}
Flier void Flap(int a) {}
.ot TakeoffAndLand }

class B747 extends P ane {

class Pl ane personifies Hier {

F————
'--pg- Framework MechFlier flier = ...
\ takeof f () voi d Takeoff () { flier.takeoff(); }
\ [and() void Land() { flier.land(); }
\ -_5 void Flap(int a) { ... }
ar
. class Vater P ane extends Plane {
--’) void Takeof f() { ... }
H void Flap(int a { ...}
// void Land() { ... }
) Wheel s /| class Weels { ... }
i class BWheel extends Weel s,
(personi fies LandGear {

B747,\nat §rPlane |~ II: void servoon() { ... }

void servoMove() { ... }
void servoOff() { ... }

BWieel Whiee

class Wheel extends Weels {...}

PlaneApp V4

Figure 20: The Plane Application using two side-by-side frameworks

There are several items worth noticing in the above implementation. First, the two
frameworks are kept separate. Second, the B747 class contains a reference to the
MechFl i er object within the Takeof f AndLandFr anmewor k instance. Third, the details
on how to construct the BWwheel objects, how to pass them to the framework are not

73

shown. Fourth, the application developer needs to hand-write all the delegation code (in the
B747 class).

While this second alternative to using multiple frameworks at different levels of abstraction
in the same application might seem more problematic, it actually is a little bit cleaner from an
architecture perspective. Not only are the two frameworks separated but also the connection
between them is in the control of the application developer, who can solve minor
“impedance mismatchs” between what one provides and what the other expects. The
previous approach, on the other hand, requires an almost perfect correspondence in syntax
and semantics for the automatic compositor to work. Also, as shown in the example, the
previous approach might lead to a creation of artificial personalities to encapsulate the bits of
behavior from the higher-level framework that were not provided by the lower-level

framework and thus need to be passed along to the application for implementation.

Regardless of which method we select, the use of Personalities as the mediators between
frameworks and applications allows us greater flexibility than traditional mechanisms. We
believe that building a compositor as outlined in the preceding section is fairly simple and

would constitute a useful tool for framework composition.

OTHER COLLABORATION-BASED WORK

Personalities are related to, and can be used in conjunction with, other ideas for
encapsulating behavior at a larger granularity. Techniques such as Adaptive Plug-n-Play
Components (APPCs) [Mezini98] and Class Graph Views (CGVs) [Ovlinger98] attempt to
model behavior at a larger scale than that of personalities and can make use of the
Personalities concept. In a sense, all these techniques are equivalent to frameworks and thus
the Personalities concept can be used for embodying the contract or hotspot between them

and the application code.

The purpose of an APPC is to encapsulate a slice of behavior. It essentially encapsulates one

sequence interaction diagram. APPCs are similar in concept to frameworks, though they

74

differ substantially in their expressiveness and adaptability. An APPC has an entry point
called the main entry method call. From that single method call, a number of interactions
between different classes might take place. APPCs can be composed and they of course need

to be applied to an application in order for them to “execute”.

The application ties into the APPC through something similar to the hotspot concept in
framework technology [Johnson97]. We propose using Personalities as the glue between the
APPC and the application, or between two APPCs. Since we will need one APPC per
implementation of a downstream interface method, Personalities’ capability of easily multiply

personifying several classes becomes essential.

CGVs are another approach for specifying different views on an application’s class diagram.
These views encapsulate behavior much in the same way as APPCs do. CGVs define a
concept that is somewhat similar, at least in structure, to a personality. It is called a c/ass
definition and it contains both bebavior methods and map methods. These are analogous to a
personality’s upstream and downstream interface methods, respectively. We believe that a
good way to merge the two technologies would be to replace class definitions by

personalities.

75

Chapter 6

FUTURE WORK

In this chapter we will present some of our ideas for future research work. We believe most

of these to be attainable, and of practical use to software engineers.

PERFORMANCE RANGES OR GUARANTEES

An early version of this work was presented at a workshop about pragmatic issues in
Framework technology at OOPSLA '98. The idea of using of personalities as the interface
layer between different frameworks was well received. Some suggestions were made to
incorporate more information in the downstream interface specifications. More specifically,
items such as memory requirements, average and worst execution speed, and scalability
expectations would be very useful when application developer set out to use a framework

through the use of Personalities.

While we wholeheartedly adhere to the intention of the workshop participants, we must note
that we know of no way of programmatically verifying that a downstream implementation is
within certain specified semantic ranges. Therefore, we must once again put our trust on the

programmer.

MAPPING AND PARAMETER CONVERSION

When a personifying class wants to attach to a personality, it needs to define all the functions
in that personality’s downstream interface. This is usually not a problem when we are dealing
with brand-new applications but might become cumbersome if we have an existent

application that we are extending or enhancing. For example, we might already have a Zoo

76

application but, after having added a theme park to our Zoo, we decided to purchase the

ShowFr anewor k for implementing the shows in our application.

In such an environment, we might have classes that can already provide the functionality
required by a personality’s downstream interface. However, there might be a mismatch in
these functions name or, more generically, their signature. For example, if we were working
for a space agency, we might have a class such as the one shown in Code Sample 16. If we
wanted to have this class personify Flier, we shouldn’t need to define Takeof f (),

Ascend(), etc. so that they simply delegate to the respective SpaceShut t | e methods.

cl ass SpaceShuttle {
voi d EngageRockets() { ... }
voi d ExitAtnosphere() { ... }
void Obit(int x, int y) { ... }
voi d Enter At nosphere() { ... }
void Land() { ... }
bool ean ThereYet(int x, int y) { ... }

Code Sample 16: SpaceShut t | e class

A simple name mapping mechanism would remove the need for these artifices to be created.
Assuming the mismatch is only in the method name, we could very easily define a mapping
from each of the personality’s downstream interface methods to the corresponding
personifying class methods. The Personalities/J compiler could then automatically insert the
delegation code as appropriate. Code Sample 17 shows one possible language extension to
accommodate this mapping. Notice that neither Land() nor Ther eYet () are mentioned
in the map since they have the exact same signatures as the personality requires and

therefore are handled by the “default” case.

cl ass SpaceShuttle personifies Flier
wi th EngageRockets = Takeof f,
Exi t At nosphere = Ascend,
Obit = Flap,
Ent er At nosphere = Descend

voi d EngageRockets() { ... }

voi d ExitAtnosphere() { ... }

void Obit(int x, int y) { ... }

voi d Enter At nosphere() { ... }

void Land() { ... }

bool ean ThereYet(int x, int y) { ... }
}

Code Sample 17: SpaceShut t | e class with name-mapped personification

"7

Even such a simple mapping mechanism would also make it easier for a new class to
personify two or more personalities with semantically equivalent downstream interface
methods. For instance, if one personality calls for a SaveToDB() function and a different
one calls for Per si st Your sel f (), they both can be mapped to the same implementation
code without having to create two implementations and having to explicitly delegate from
one to the other.

So far, we have only considered the case where the only mismatch between the personality
requirements and the existent class were the names of the methods providing the behavior.
What about slight differences in parameters? We can extend this simple mapping to
accommodate minor semantic differences. If, for instance, you have purchased your
ordering system and your data collection system from different vendors, you might get
personalities that speak about the same ideas but in slightly different terms. Code Sample 18
shows one possible situation in which two different personality providers have developed
their interfaces using different measurement systems. We call these two personalities
semantically equivalent but syntactically different, or SEBSD for short.

// from Vendor A (in Argentina, for instance)

personal i ty FruitProducer {

d| . bool ean CheckSt ockHas(doubl e kil ograns);
}

/1 from Vendor B (in the US, for instance)
personal ity FreezerUser {

d| - bool ean Val i dat ePr odQuant (doubl e pounds);
}
Code Sample 18: Two SEBSD personalities

In such a case the original mapping approach would not work since there’s a unit conversion
that needs to take place in between. Thus, the application developer needs to both do the
conversion and also delegate. Code Sample 19 shows one possible class that personifies both

personalities and performs this conversion and delegation.

78

cl ass TheRedAppl el nc ext ends Appl eCo
personi fies FruitProducer, FreezerUser

{

publi ¢ bool ean CheckSt ockHas(doubl e ki | ograms) {
/'l behavior is inplenented in netric system

}
publ i ¢ bool ean Val i dat ePr odQuant (doubl e pounds) {
return CheckStockHas(pounds * 0.454);

}
}
Code Sample 19: Personifying two SEBSD personalities without parameter conversion

The addition of some new syntax and compiler support to provide “on-the-fly” parameter
conversion would allow these problems to be overcome. Code Sample 20 shows what the
client code would look like with the new syntax.

cl ass TheRedAppl el nc ext ends Appl eCo
personi fies FruitProducer, FreezerUser
wi t h CheckSt ockHas = Val i dat ePr odQuant (<pounds>*2. 2)
{

bool ean CheckStockHas(double kilograms) { . }
/1 Validat eProdQuant needs not be i npl enent ed at al |

}
Code Sample 20: Personifying two SEBSD personalities with parameter conversion

INHERITANCE OF PERSONALITIES

Providing extensibility of personalities via inheritance seems a good way to specialize a given
personality and reduce the requirements on the implementing application. In such a context,
we would usually have a higher-level personality and a lower-level personality that provides
the downstream implementation for the first one and in turn requires an even lower-level,

higher granularity implementation from the application.

Extending personalities in such a way would achieve the reduction of the level of abstraction
since as an application developer you might not be ready to implement certain personality’s
downstream interface (i.e. it might be too high-level for you) but you might know how to
deal with lower-level problems. In such a case, we envision a middle behavior layer (that is,
another personality) that would simply provide “generic” behavior for the higher level

personality and reduce the abstraction or complexity on the downstream interface it requires

79

from clients. This extension can be viewed as triangle, with abstraction decreasing as we

move down while granularity increases, as shown in Figure 21.

Abstraction

Flier

[

<>

Mechani cal Fl i er

n n
v IV v Granularity

Figure 21: Inheritance of Personalities w.r.t. abstraction and granularity

Inheritance of personalities can keep the exact same semantics as in Java inheritance. A
Mechani cal Fl i er personality can extend a Fl i er personality as shown in Code Sample
21 (details have been omitted and the code might not be representative of a real plane, but

does present the difference in abstraction and granularity that we have mentioned before).

personal ity Mechani cFlier extends Flier

voi d TakeOrf () {
got oRunway() ;
wai t For d ear ance() ;
speedUp() ;
i ncreaseFl aps();
bri ngLandi ngGear Up() ;

}

void Ascend() { ... }

void FlapTowards(int x, int y) { ... }
bool ean ThereYet(int x, int y) { ... }
void Descend() { ... }

void Land() { ... }

di voi d got oRunway();

di void waitFord earance();
di void speedUp();

di void increaseFl aps();

di bringlLandi ngCGear Up() ;

}
Code Sample 21: Mechani cFl i er ext ends Fl i er

80

Notice that this Mechani cFl i er is different from that we presented in our discussion
about frameworks, which we termed MechFlier. Mechani cFlier implements its
behavior (basically FI i er’s downstream interface) without interacting with other classes. In
a sense, it is a stand-alone unit of behavior, just as Fl i er. MechFl i er, on the other hand,
Is part of a bigger framework and might require complex collaborations to carry out its
behavior. The names have been purposely made similar to bring attention to the fact that
while they both “do the same thing” they are not similar in terms of their requirements on

the software environment.

COMPOSITION OF PERSONALITIES

We have explored composition of frameworks and how Personalities help ease that process
in previous sections. Along the same ideas we could think of composing just the
personalities themselves. It would be useful to take two complementary personalities and
generate a third one. For example, if we had our Fl i er personality and we purchase an
Acr obat i ¢ personality, we would be interested in composing the two to generate an
Acrobati cFlier personality that would have the Flier behavior but with an

Acr obat i ¢ “flavor”.

An application would use such a composed personality by providing an implementation for
a subset of the union of the downstream interfaces of the original personalities. However,
we still need glue code to make it all work together. The Fl i er personality has very specific
downstream interface requirements. Acr obat i c, by the same token, might require different
methods from the personifying class. We believe that in order for the composition to
succeed we will need a third entity (possibly a class) that would personify both personalities
being composed, provide a generic implementation of one using the other, and generate a
new personality for the composed behavior requiring the minimum amount of behavior

from the end-user application as possible.

81

In our hypothetical example, this means that this “composer” class will need to personify
Fl i er and make use of Acr obat i c’s upstream interface to make sure that all the behavior
of a flier can be carried out doing rolls, loops, free-falls, etc. This is not a simple problem
because right away we notice an asymmetry in the composition, since one of the
personalities will “dominate” the behavior of the composed one. In this particular case, the
Fl i er personality dominates since Acrobatic is merely an *adjective” to Flier’s
behavior. Ways for specifying these dependencies as well as for automatically generating the

composition code remain a topic of current research.

82

Chapter 7

WHERE HAVE WE SEEN THIS BEFORE?

Role modeling in the object-oriented world has traditionally been an area of active research.
Therefore, there are many works that have some similarities with the ideas presented in this

thesis. We explore the different approaches and study how they differ from Personalities.

USING DELEGATION

One category of related works includes approaches that are based on using delegation to
emulate modeling roles an object may play during its life, such as the work by LalLonde et al.
on Exemplar-Based Smalltalk [LalLonde86] and the work by Gottlob et al. on extending
object-oriented systems with roles [Gottlob96]. Both approaches support two kinds of
hierarchies: class and role hierarchies (called exemplars in [LaLonde86]). The main focus of
these works is, however, on supporting dynamic modifications of an object’s behavior, as it
undertakes/cancels certain roles and not on explicitly supporting functional decomposition.
Artifacts that model roles, or exemplars, are strongly bound to a certain class in the
inheritance hierarchy. As a result, it is not possible to apply the same behavior to different
unrelated classes, as it is the case with, e.g., the Wal ker personality being applicable to both
Ant s and Cows. Again, because of the focus on supporting evolving objects, there are no

equivalent notions to the upstream and downstream interfaces of the Personalities.

RELAXING INHERITANCE

On the other side, there are several works aimed at improving the expressiveness of the
inheritance structure by relaxing the class-subclass relationships that could also support
modeling stand-alone behavior that can be reused in several scenarios. This category includes
the work on wixin-based inberitance [Bracha90, Bracha92], contracts [Holland93], mixin-methods

83

[Lucas94], Mixed]ava [Flatt98], Rondo [Mezini98)], and context relationship [Seiter98]. These
works share the fact that variations on a base behavior are modeled in stand alone artifacts
called mixins in [Bracha90, Bracha92] and [Flatt98], contracts in [Holland93], mixin-methods
in [Lucas94], adjustments in [Mezini98], and context objects in [Seiter98]. These artifacts do
not commit to any base behavior when defined. Rather, they refer to the base behavior by
means of an (unbound) super parameter and the s/ reference. The individual approaches
differ from each other on two main points: (1) the level at which the variation is specified —
object vs. class level, and, (2) the time when variations can be applied — dynamically vs.

statically.

From the perspective of this paper, the important point is that the variations are not coupled
to a static inheritance hierarchy as with standard inheritance. One could use mixins to model
high-level reusable functions, since classes and mixins can be freely arranged in inheritance
chains. However, these approaches are lower-level with regard to modeling high-level
popular functions as compared to Personalities. None of them provides for guaranteed
semantics of the popular behaviors and for declaring the interface expected from the
personifying classes. However, they provide flexible behavior composition that could be
used to implement Personalities instead of using delegation. In particular, Rondo and the
context relationship approaches could be used in our future work on fully dynamic

Personalities.

THE VISITOR PATTERN

The work presented in [Krishnamurthi98] also considers the need for synthesizing object-
oriented and functional decompositions. The visitor pattern [Gamma94] is considered as a
technique for filling the gap. The visitor pattern could be used in our running example, as
follows. First, each popular behavior will be modeled in a separate visitor class, with the
individual visitor classes all being subclasses of an abstract Visitor class. The implementation
of the popular behavior would be encoded in visit() messages. All animals must
understand an accept () message taking a visitor object as a parameter. When the

84

accept () message is invoked on an animal object with a visitor as a parameter, the animal
object will invoke vi sit () to the visitor parameter, passing itself along the invocation.
Thus a client wanting to invoke a popular function on a certain animal would create an
instance of the visitor class for this popular function and call accept () on the animal with

the visitor as a parameter.

There is a severe problem with this approach related to the fact that visitors are normal
classes and thus do not have any notion of the downstream interface. Each visitor needs to
somehow declare to which types its popular behavior applies. It can not simply accept an
object of the most general type Ani mal as the parameter of its visit method, since the
compiler in a strongly typed language like Java would complain when “downstream*
functions are applied to this object within the micro-framework of the popular function. In
absence of a real downstream interface, each concrete visitor class would implement as many
different vi si t () messages as there are concrete animal classes to which the popular
behavior encoded by the visitor applies. For instance, there will be a visitor class for the
Wal ker behavior, say Val ker Vi si t or. This will have a different vi si t () methods for
Cow, Pengui n, Ant and Locust, although the implementations of these messages are the
same — each embodying the same micro-framework of the upstream message Wal k() in
the Wal ker Personality. Not only is this solution awkward, but it also damages reusability,
since popular functions are still strongly coupled to the data hierarchy. Adding new animal
classes (data abstractions) and declaring them to personify an existing personality is

iImpossible without changing the implementation of the popular functions.

SUBJECT-ORIENTED PROGRAMMING

The work on subject-oriented programming [Harrison93] aims at enabling the construction of
object-oriented software as a sequence of collaborating applications, each providing its own
subjective view Of the domain to be modeled, and defined independently from the others. A
subject 1 a collection of class fragments with each fragment providing only one subjective

view of the “whole” data abstraction captured by the class. Personalities can serve for

85

modeling these fragments, especially when enhanced with mechanisms for composing them
that would enable to model the composition of fragments into subjects and of individual

subjects into higher-level subjects.

ADAPTIVE PROGRAMMING

In Karl Lieberherr’s work, behavior is described by propagation patterns (in Demeter/C++
[Lieberherr96]) or adaptive methods (in Demeter/Java [Lieberherr97]), separate from
specific classes. This separately specified behavior is later reused in many different class
structures. Propagation patterns (or adaptive methods) are similar in spirit to personalities,
they specify behavior for a family of classes and they both need to be mapped into specific
classes. However, both propagation patterns and adaptive methods don't enforce the laws of

personalities as described in this paper.

THE RAPIDE CONNECTION

Our concept of upstream and downstream interfaces is very similar in spirit to that of
provided and reguired interfaces in [Luckham95]. However, required interfaces refer to other
program modules (ie. other interfaces), whereas a personality’s downstream interface refers
to a class that is part of the personified object itself. Furthermore, the different functions in
the required set can be serviced from different modules in a system, whereas only one class
must implement the entire downstream interface. We have purposely kept a different
nomenclature to emphasize the fact that [Luckham95] aims at defining an architecture

whereas personalities work at a much smaller (class) granularity.

86

Chapter 7

CONCLUDING REMARKS

WHAT WE SAID WE WERE GOING TO SAY

The original motivation for this work was very pragmatic. After using Java for a while to
build industrial-strength software applications we started to dislike the fact that some of our
tried-and-true programming practices (e.g. souped-up template-method pattern [Gamma95])
were not easily expressed because of Java’s lack of multiple inheritance support coupled with
the constraints imposed on interfaces. We thought then about a simple extension to the
language to simply “mimic” multiple inheritance. Little did we know that we were going to

get into roles, frameworks, and all kinds of other neat stuff.

WHAT WE ACTUALLY SAID

We have presented a new concept, Personalities, that serves to encapsulate what traditionally

has been called a Role. Personalities present several benefits to software engineers, including:

Mimicking multiple-inheritance for behavior encapsulation

* Implementation of the template-method pattern [Gamma95], with substantial
semantic additions to make certain that the behavior remains encapsulated.

* Grouping of a set of upstream methods (a.k.a template-methods) into one cohesive
collection to give it a specified semantics and identity in the software developer’s

arsenal.

» Automatic support for object-migration when using dynamic personalities.

87

Finally, we contrasted Personalities with the large amount of previous works in this area,

explaining the differences between those approaches and this one.

WHAT GOOD IT DID US

We consider personalities merely just an evolutionary step towards better support for role
modeling in programming languages. A simple extension to the language yielded a number
of interesting possibilities. We conscientiously decided to focus on the theoretical and/or
practical aspects of the Personalities idea rather than in the implementation details. However,
the Personalities implementation in terms of the Java programming language turned out to
be a good example of the use of Design Patterns.

As expected, Personalities play well with Frameworks. Even though it would seem obvious,
since Personalities are supposed to be embodiments of “micro-frameworks”, the realization
that Personalities can readily replace hotspots and bring something to the mix was a
welcomed one. The Personalities concept was very well received at a workshop about
pragmatic issues in Framework technology at OOPSLA earlier this year, which provided us
with a lot of encouragement.

The contributions of this work are manifold and are detailed earlier in this chapter. In
closing, however, we would like to point out that we believe Personalities to be just the tip
of the iceberg in the arena of role-modeling in object-oriented design. We have easily found
a lot of synergy between personalities and other approaches which leads us to believe that
the research community as a whole might be converging towards a more sensible approach
to object-oriented design. We hope that Personalities have added some clarity at the micro-

design level.

BIBLIOGRAPHY

[Andersen92] Egil Andersen, Trygve Reenskaug. System Design by Composing Structures
of Interacting Objects. In Proceedings of Eurgpean Conference on Object-Oriented Programming
(ECOOP) 1992. Springer-Verlag, pp. 131-152.

[Arnold97] Ken Arnold, James Gosling. The Java Programming Language, Second Edition.
Addison-Wesley, December 1997.

[Bellin97] David Bellin, Susan Suchman Simone. The CRC Card Book. Addison-Wesley,
1997.

[Blando98] Luis Blando, Karl Lieberherr, Mira Mezini. Modeling Behavior with
Personalities. Technical Report: NU-CCS-98-08, Northeastern University, August 1998.

[Booch94] Grady Booch. Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Company, Inc., 1994.

[Bracha90] Gilad Bracha, William Cook. Mixin-based Inheritance. In Proceedings of the ACM
Conference on Object-Oriented Programming: Systems, Langnages, and Applications (OOPS1.A)
1990.

[Bracha92] Gilad Bracha, Gary Lindstrom. Modularity meets Inheritance. In Proceedings of
IEEE Computer Society International Conference on Computer Langunages (\Washington, DC,
April 1992). IEEE Computer Society, pp. 282-290.

[Flatt98] Matthew Flatt, Shriram Krishnamurthi, Matthias Felleisen. Classes and Mixins. In
Proceedings of the 1998 Principles of Programming Languages (POPL) Conference. San Diego, CA,
January 1998.

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:
Elements of Reusable Software. Addison-Wesley, 1994,

[Gottlob96] Georg Gottlob, Michael Schrefl, Brigitte Roeck. Extending Object-Oriented
Systems with Roles. In ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

[Harrison93] William Harrison, Harold Ossher. Subject-Oriented Programming (A
Critique of Pure Objects). In Proceedings of the ACNM Conference on Object-Oriented
Programming: Systems, Langnages, and Applications (OOPSI.A) 1993.

[Holland93] lan Holland. The Design and Representation of Object-Oriented
Components. PAD Thesis. Northeastern University, 1993.

[Jacobson92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Gunnar Overgaard.
Object-Oriented Software Engineering: A Use Case Driven Approach. Addison Wesley,
1992.

[Johnson97] Ralph Johnson. Frameworks = (Components + Patterns). In Communications
of the ACM, Vol. 40, No. 10. October 1997.

[Krishnamurthi98] Shriram Krishnamurthi, Matthias Felleisen, Daniel Friedman.
Synthesizing Object-Oriented and Functional Design to Promote Reuse. In Proceedings of
ECOOP ’98. Lecture Notes on Computer Science, Springer Verlag, 1998.

[LaLonde86] Wilf R. LaLonde, Dave Thomas, John Pugh. An Exemplar-Based Smalltalk.
In Proceedings of OOPST.A "86. ACM Sigplan Notices, Vol. 21, No. 11, pp. 322-330.

[Lieberherr96] Karl Lieberherr. Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns. PWS Publishing Company, Boston, 1996.

[Lieberherr97] Karl Lieberherr, Doug Orleans. Preventive Program Maintenance in
Demeter/Java (Research Demonstration). In Proceedings of ICSE *97. ACM Press, pp.
604-065. 1997.

89

[Lucas94] Carine Lucas, Patrick Steyaert. Modular Inheritance of Objects Through Mixin-
Methods. In Proceedings of the 1994 Joint Modular 1.anguages Conference (JMLC). Springer-
Verlag, pp. 273-282.

[Luckham95] David Luckham, James Vera, Sigurd Meldal. Three Concepts of System
Architecture. Stanford University Technical Report, CSL-TR-95-674, July 1995.

[Meyer88] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall
International Series in Computer Science, 1988.

[Mezini97] Mira Mezini. Variation-Oriented Programming Beyond Classes and Inheritance.
PhD Thesis, University of Siegen, 1997.

[Mezini98] Mira Mezini, Karl Lieberherr. Adaptive Plug-and-Play Components for
Evolutionary Software Development. In Proceedings of ACM Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSL.A) 1998.

[OMG92] Object Management Architecture Guide. OMG Document 92.11.1, Object
Management Group, 1992.

[Ovlinger98] Johan Ovlinger, Karl Lieberherr. Class Graph Views. Technical Report: NU-
CCS-98-07, Northeastern University, August 1998.

[Rumbaugh91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[Seiter98] Linda Seiter, Jeng Palsberg, Karl Lieberherr. Evolution of Object Behavior
Using Context Relations. In IEEE Transactions on Software Engineering. VOI. 24, No. 1,
January 1998, pp. 79-92.

[Wieringa94] Roel Wieringa, Wiebren de Jonge, Paul Spruit. Using Dynamic Classes and
Role Classes to Model Object Migration. Theory and Practice of Object Systems, Vol 1(1), pp.
61-83, 1995.

90

[Wirfs90] Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener. Designing Object-
Oriented Software. Prentice-Hall, 1990.

91

APPENDIX A - A COMPLETE EXAMPLE

This appendix presents the implementation for the running example we have used in this
thesis. The application itself is very simplistic, but does demonstrate the different
characteristics of the Personalities concept. We present implementations for both the static
and the dynamic versions.

THE STATIC VERSION

THE . PJ FILES FOR THE ANIMAL HIERARCHY

THE PERSONALITY FILES

93

THE CLIENT USING STATIC PERSONALITIES

94

THE GENERATED JAVA CODE

Animal Hierarchy

Personalities

97

Client Code

98

THE DYNAMIC VERSION

There are no changes needed in either the Animal or the Personalities hierarchy for the
dynamic version. The clients of the personalities, however, do need to change as well as the
generated Java code.

THE CLIENT USING DYNAMIC PERSONALITIES

99

100

THE GENERATED JAVA CODE

Animal Hierarchy

101

102

Personalities

103

104

Client Code

105

' On Figure 9, the following “implements” relationships are not shown to keep the diagram
uncluttered: SeaLi on i npl enents Wal ker, Junper ; Whal e i npl enents Swi mmer ; and
Pelican inmplenments Flier.

106

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF CODE SAMPLES
	ACKNOWLEDGMENTS
	THE DIFFICULT TASK OF MODELING BEHAVIOR
	THE FUNCTIONAL NATURE OF SOFTWARE SYSTEMS
	FINDING OBJECTS AND BEHAVIOR
	WHEN BEHAVIOR MISBEHAVES
	Roles and the Application Domain Functions
	The Problem of Mapping Application Domain Functions to the Class Hierarchy

	ISSUES IN MODELING POPULAR FUNCTIONS
	Pelicans, Whales, and The Virtual Zoo: A Running Example
	Alternatives for Mapping Popular Functions

	MODELING WITH PERSONALITIES
	ANALYSIS AND DESIGN WITH ROLES
	WHAT ARE PERSONALITIES?
	Syntax and Usage
	The Law of Personalities
	No Default Implementation Rule (the need for some class)
	Basic Types Rule (KISS)
	After some debate, we decided to demote this rule to recommendation-level status. Strictly enforcing this rule makes the job of componentizing personalities too difficult, as translation to/from basic types is required at every interface. We strongly rec
	Behavioral Buffer Rule (gotta do something, after all)
	Fixed Popular Behavior Rule (don’t go second-guessing me)
	Implementation Separation Rule (to each its own)
	The Rule That Almost Made It

	DYNAMIC PERSONALITIES
	WHY DO WE EVEN CARE ABOUT THIS?
	WHAT’S WRONG WITH PERSONALITIES “AS-IS”
	Where Static Personalities Have It Right
	Where Static Personalities Fall Short

	DYNAMIC PERSONALITIES
	What We Are Trying To Achieve
	Indecisive Personalities. (Not Fully Dynamic, But Good Enough)
	Fully Dynamic Personalities (The Wonders of Simplifying)
	Method Dispatch in Dynamic Personalities
	Class’ Conformance to a Personality’s DI

	PERSONALITIES/J
	A FEW WORDS ABOUT THE PROGRAMMING ENVIRONMENT
	IMPLEMENTING STATIC PERSONALITIES
	Java and Interfaces
	The Mapping Process
	Using a Class that Personifies
	Mapping to Java

	THE CHANGES FOR DYNAMIC PERSONALITIES
	Personalities’ Protocol
	Client Code Changes
	The Generated Java Code

	PERSONALITIES AND THEIR BIG COUSINS
	FRAMEWORKS AND PERSONALITIES
	Adapting a Framework using Hotspots
	Personalities as Hotspots
	Personalities as Traffic Cops
	Composing Frameworks using Personalities
	Delegating Composition to the Application’s Code

	OTHER COLLABORATION-BASED WORK

	FUTURE WORK
	PERFORMANCE RANGES OR GUARANTEES
	MAPPING AND PARAMETER CONVERSION
	INHERITANCE OF PERSONALITIES
	COMPOSITION OF PERSONALITIES

	WHERE HAVE WE SEEN THIS BEFORE?
	USING DELEGATION
	RELAXING INHERITANCE
	THE VISITOR PATTERN
	SUBJECT-ORIENTED PROGRAMMING
	ADAPTIVE PROGRAMMING
	THE RAPIDE CONNECTION

	CONCLUDING REMARKS
	WHAT WE SAID WE WERE GOING TO SAY
	WHAT WE ACTUALLY SAID
	WHAT GOOD IT DID US

	BIBLIOGRAPHY
	APPENDIX A – A COMPLETE EXAMPLE
	THE STATIC VERSION
	The .pj Files for the Animal Hierarchy
	The Personality Files
	The Client using Static Personalities
	The Generated Java Code
	Animal Hierarchy
	Personalities
	Client Code

	THE DYNAMIC VERSION
	The Client using Dynamic Personalities
	The Generated Java Code
	Animal Hierarchy
	Personalities
	Client Code

